Что входит в аминокислоты

Что входит в аминокислоты

Аминокислоты – органические вещества, состоящие из углеводородного скелета и двух дополнительных групп: аминной и карбоксильной. Последние два радикала обусловливают уникальные свойства аминокислот – они могут проявлять свойства как кислот, так и щелочей: первые – за счет карбоксильной группы, вторые – за счет аминогруппы.

Итак, мы выяснили, что такое аминокислоты с точки зрения биохимии. Теперь рассмотрим их влияние на организм и применение в спорте. Для спортсменов аминокислоты важны своим участием в протеиновом обмене. Именно из отдельных аминокислот строятся протеины для роста мышечной массы нашего тела – мышечная, скелетная, печеночная, соединительная ткани. Помимо этого, некоторые аминокислоты напрямую участвуют в обмене веществ. К примеру, аргинин участвует в орнитиновом цикле мочевины – уникальном механизме обезвреживания аммиака, образующегося в печени в процессе переваривания белков.

  • Из тирозина в коре надпочечников синтезируются катехоламины – адреналин и норадреналин – гормоны, функция которых – поддержание тонуса сердечно сосудистой системы, мгновенная реакция на стрессовую ситуацию.
  • Триптофан – предшественник гормона сна – мелатонина, вырабатывающегося в шишковидном теле головного мозга – эпифизе. При недостатке этой аминокислоты в рационе процесс засыпания усложняется, развивается бессонница и ряд других заболеваний, ею обусловленных.

Перечислять можно долго, однако остановимся на аминокислоте, значение которой особенно велико для спортсменов и людей, умеренно занимающихся спортом.

Для чего нужен глютамин

Глютамин – аминокислота, лимитирующая синтез протеина, из которого состоит наша иммунная ткань – лимфатические узлы и отдельные образования лимфоидной ткани. Значение этой системы переоценить трудно: без должного сопротивления инфекциям ни о каком тренировочном процессе говорить не приходится. Тем более, что каждая тренировка – не важно, профессиональная или любительская – это дозированный стресс для организма.

Стресс – необходимое условие, чтобы сдвинуть с места нашу “точку равновесия”, то есть вызвать определенные биохимические и физиологические изменения в организме. Любой стресс – это цепь реакций, мобилизующих тело. В промежуток, характеризующий регресс каскада реакций симпатоадреналовой системы (а именно они и представляют собой стресс), происходит снижение синтеза лимфоидной ткани. По этой причине процесс распада превышает скорость синтеза, а значит, иммунитет ослабевает. Так вот, дополнительный прием глютамина сводит к минимуму этот крайне нежелательный, но неизбежный эффект физической нагрузки

Незаменимые и заменимые аминокислоты

Чтобы понять, для чего нужны незаменимые аминокислоты в спорте, необходимо иметь общие представления о белковом обмене. Потребленные человеком белки на уровне желудочно-кишечного тракта обрабатываются ферментами – веществами, расщепляющими пищу, которую мы употребили.

В частности, белки распадаются сперва до пептидов – отдельных цепочек аминокислот, не имеющих четвертичной пространственной структуры. И уже пептиды распадутся на отдельные аминокислоты. Те, в свою очередь, усваиваются организмом человека. Это значит, что аминокислоты всасываются в кровь и только с этого этапа могут быть использованы в качестве продуктов для синтеза белка тела.

Забегая вперед скажем, что прием отдельных аминокислот в спорте сокращает этот этап – отдельные аминокислоты будут сразу же всасываться в кровь и процессы синтеза, а также биологический эффект аминокислот наступят быстрее.

Всего существует двадцать аминокислот. Чтобы процесс синтеза белка в теле человека стал возможным в принципе, в рационе человека должен присутствовать полный спектр – все 20 соединений.

Незаменимые

Вот с этого момента и появляется понятие незаменимости. К незаменимым аминокислотам относятся те, которые наше тело не способно синтезировать самостоятельно из других аминокислот. А это значит, что появится им, кроме как из продуктов питания, неоткуда. Таких аминокислот насчитывается 8 плюс 2 частично-заменимые.

Рассмотрим в таблице, в каких продуктах содержится каждая незаменимая аминокислота и какова ее роль в организме человека:

Название В каких продуктах содержится Роль в организме
Лейцин Орехи, овес, рыба, яйца, курица, чечевица Снижает содержание сахара в крови
Изолейцин Нут, чечевица, кешью, мясо, соя, рыба, яйца, печень, миндаль, мясо Восстанавливает мышечную ткань
Лизин Амарант, пшеница, рыба, мясо, большинство молочных продуктов Принимает участие в усвоении кальция
Валин Арахис, грибы, мясо, бобовые, молочные продукты, многие зерновые Принимает участие в обменных процессах азота
Фенилаланин Говядина, орехи, творог, молоко, рыба, яйца, разные бобовые Улучшение памяти
Треонин Яйца, орехи, бобы, молочные продукты Синтезирует коллаген
Метионин Фасоль, соя, яйца, мясо, рыба, бобовые, чечевица Принимает участие в защите от радиации
Триптофан Кунжут, овес, бобовые, арахис, кедровые орехи, большинство молочных продуктов, курица, индейка, мясо, рыба, сушенные финики Улучшает и делает сон глубже
Гистидин (частично-заменимая) Чечевица, соевые бобы, арахис, тунец, лосось, говяжье и куриное филе, свиная вырезка Принимает участие в противовоспалительных реакциях
Аргинин (частично-заменимая) Йогурт, кунжут, семена тыквы, швейцарский сыр, говядина, свинина, арахис Способствует росту и восстановлению тканей организма

В достаточном количестве аминокислоты содержатся в животных источниках белка – рыбе, мясе, птице. При отсутствии таковых в рационе весьма целесообразен прием недостающих аминокислот в качестве добавок спортивного питания, что особенно актуально для спортсменов-вегетарианцев.

Основное внимание последним стоит обратить на такие добавки, как ВСАА – смесь лейцина, валина и изолейцина. Именно по этим аминокислотам возможна “просадка” в рационе, не содержащем животных источников белка. Для спортсмена (как профессионала, так и любителя) это абсолютно не допустимо, так как в долгосрочной перспективе приведет к катаболизму со стороны внутренних органов и к заболеваниям последних. В первую очередь страдает от недостатка аминокислот печень.

Заменимые

Заменимые аминокислоты и их роль рассмотрим в таблице ниже:

Название Роль в организме
Аланин Принимает участие в глюконеогенезе печени
Пролин Отвечает за составление прочной структуры коллагена
Левокарнитин Поддерживает кофермент А
Тирозин Отвечает за ферментативную активность
Серин Отвечает за построение природных белков
Глютамин Синтезирует протеины мышц
Глицин Снижает напряжение т уменьшает агрессивность
Цистеин Положительно влияет на текстуру и состояние кожи
Таурин Оказывает метаболическое действие
Орнитин Принимает участие в биосинтезе мочевины

Что происходит с аминокислотами и протеинами в вашем теле

Аминокислоты, попавшие в кровоток, в первую очередь распределяются по тканям тела, где в них есть наибольшая потребность. Если у вас есть “просадка” по определенным аминокислотам, прием дополнительного количества белка, богатого ими, или прием дополнительных аминокислот, будет особенно полезен.

Синтез белка происходит на клеточном уровне. В каждой клетка есть ядро – самая важная часть клетки. Именно в ней происходит считывание генетической информации и ее воспроизводство. По сути, вся информация о строении клеток закодирована в последовательности аминокислот.

Как выбрать аминокислоты рядовому любителю, умеренно занимающемуся спортом 3-4 раза в неделю? Никак. Они ему просто не нужны.

Более важны для современного человека следующие рекомендации:

  1. Начать питаться регулярно в одно и то же время.
  2. Сбалансировать рацион по белкам жирам и углеводам.
  3. Убрать из рациона фастфуд и некачественную пищу.
  4. Начать употреблять достаточное количество воды – 30 мл на килограмм массы тела.
  5. Отказаться от рафинированного сахара.

Эти элементарные манипуляции принесут гораздо больше, чем добавление в рацион каких бы то ни было добавок. Более того, добавки без соблюдения указанных условий будут абсолютно бесполезны.

Зачем знать, какие аминокислоты вам нужны, если вы питаетесь непонятно чем? Откуда вы знаете, из чего сделаны котлеты в столовой? Или сосиски? Или что за мясо в котлете в бургера? Про начинку для пиццы вообще промолчим.

Поэтому прежде, чем делать вывод о потребности в аминокислотах, нужно начать питаться простыми, чистыми и полезными продуктами и выполнить описанные выше рекомендации.

То же самое касается дополнительного приема белка. Если в вашем рационе присутствует белок, в количестве 1,5- 2 г на килограмм массы тела, никакой дополнительный белок вам не нужен. Лучше потратить деньги на покупку качественных продуктов питания.

Важно также понимать, что протеин и аминокислоты – это не фармакологические препараты! Это всего лишь добавки спортивного питания. И ключевое слово здесь – добавки. Добавляют их по потребности.

Чтобы понять, есть ли потребность, нужно контролировать свое питание. Если вы уже прошли описанные выше шаги и поняли, что добавки все-таки необходимы, первое, что вы должны сделать – пойти в магазин спортивного питания и выбрать соответствующий продукт в соответствии с финансовыми возможностями. Единственное, чего не стоит делать новичкам – это покупать аминокислоты с натуральным вкусом: пить их будет затруднительно по причине чрезвычайной горечи.

Вред, побочные эффекты, противопоказания

Если у вас есть заболевания, характеризующиеся непереносимостью одной из аминокислот, вы об этом знаете с рождения, так же, как и ваши родители. Этой аминокислоты нужно избегать и дальше. Если же этого нет, говорить о вреде и противопоказаниях добавок нет смысла, поскольку это полностью натуральные вещества.

Аминокислоты – составляющая часть белка, белок – привычная часть рациона человека. Все то, что продается в магазинах спортивного питания – не является фармакологическими препаратами! Только дилетанты могут говорить о каком-то вреде и противопоказаниях. По той же причине нет смысла рассматривать такое понятие, как побочные эффекты аминокислот – при умеренному потреблении никаких негативных реакций быть не может.

Читайте также:  Блинчики с творогом бжу

Трезво подходите к своему рациону и спортивным тренировкам! Будьте здоровы!

Аминокислоты, или аминокарбиновые кислоты, являются органическими соединениями, молекулы которых составляют аминные и карбоксильные группы.

Общая характеристика

Аминокислоты – это обычно кристаллические вещества со сладким привкусом, получить которые возможно в процессе гидролиза протеинов или в результате определенных химических реакций. Эти твердые водорастворимые вещества-кристаллы характеризуются очень высокой температурой плавления – примерно 200-300 градусов по Цельсию. Основными химическими элементами аминокислот являются углерод, азот,водород, кислород.

Хоть в названии этих веществ и присутствует слово «кислота», их свойства скорее напоминают соли, хотя по специфике строения молекулы могут обладать кислотными и основными способностями одновременно. А значит – одинаково эффективно воздействовать с кислотами и щелочами.

Большинство аминокислот бывают двух видов: L-изомеры и D-изомеры.

Первые характеризуются оптической активностью и встречаются в природе. Аминокислоты этой формы важны для здоровья организма. D-вещества встречаются в бактериях, играют роль нейромедиаторов в организмах некоторых млекопитающих.

В природе существует 500 так называемых стандартных, протеиногенных аминокислот. 20 из них собственно и составляют полипептидную цепь, содержащую генетический код. В последние годы в науке заговорили о необходимости расширения аминокислотной «семьи», и некоторые исследователи дополняют этот список еще 2 веществами – селеноцистеином и пирролизином.

Аминокислоты в человеческом организме

20 процентов человеческого тела состоит из протеинов, которые принимают участие практически во всех биохимических процессах, и аминокислоты являются «строительным материалом» для них. Большинство клеток и тканей человеческого организма состоят из аминокислот, которые играют ключевую роль в транспортировке и хранении питательных веществ.

Интересно, что в природе только растения и некоторые микроорганизмы способны синтезировать все виды аминокислот. А вот люди (и животные) запасы некоторых необходимых для жизни аминокислот могут получать только из продуктов питания. Исходя из способности к синтезированию, эти полезные вещества разделяют на 2 группы:

  • незаменимые (организм получает только из пищи);
  • заменимые (производятся в человеческом теле).

Незаменимые аминокислоты это: аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин.

Заменимые аминокислоты: аланин, аспарагин, аспартат, глицин, глутамин, глутамат, пролин, серин, тирозин, цистеин.

И несмотря на то, что организм способен синтезировать аргинин и гистидин, эти аминокислоты также принадлежат к числу незаменимых, так как часто возникает потребность дополнять их запасы из пищи. То же самое можно сказать и о тирозине, который может из своей группы заменимых перейти в список незаменимых, если организм почувствует недостаток в фенилаланине.

Популярные классификации

В научном мире для систематизации аминокислот используют разные параметры. Существует несколько классификаций, применяемых для этих веществ. Как уже отмечалось, различают заменимые и незаменимые аминокислоты. Меж тем, эта классификация не отражает объективной степени важности каждого из названных веществ, так как все аминокислоты – значимы для человеческого организма.

Другие наиболее популярные классификации

Учитывая радикалы, аминокислоты делятся на:

  • неполярные (аланин, валин, изолейцин, лейцин, метионин, пролин, триптофан, фенилаланин);
  • полярные незаряженные (аспарагин, глутамин, серин, тирозин, треонин, цистеин);
  • полярные с отрицательным зарядом (аспартат, глутамат);
  • полярные с положительным зарядом (аргинин, лизин, гистидин).

Учитывая функциональность группы:

  • ароматические (гистидин, тирозин, триптофан, фенилаланин);
  • гетероциклические (гистидин, пролин, триптофан);
  • алифатические (в свою очередь создают еще несколько подгрупп);
  • иминокислота (пролин).

Учитывая биосинтетические семейства аминокислот:

  • семейство пентоз;
  • семейство пирувата;
  • семейство аспартата;
  • семейство серина;
  • семейство глутамата;
  • семейство шикимата.

Согласно иной классификации различают 5 видов аминокислот:

  • серосодержащие (цистеин, метионин);
  • нейтральные (аспарагин, серин, треонин, глутамин);
  • кислые (глутаминовая кислота, аспарагиновая кислота) и основные (аргинин, лизин);
  • алифатические (лейцин, изолейцин, глицин, валин, аланин);
  • ароматические (фенилаланин, триптофан, тирозин).

Помимо того, есть вещества, биологические свойства которых очень напоминают аминокислоты, хотя на самом деле они таковыми не являются. Яркий пример – таурин, названный аминокислотой не совсем верно.

Аминокислоты для бодибилдеров

Своя классификация аминокислот существует и у бодибилдеров. В спортивном питании применяют 2 вида питательных веществ: свободные аминокислоты и гидролизаты. К первым принадлежат глицин, глутамин, аргинин, которые характеризуются максимальной скоростью транспортировки. Вторая группа – это протеины, расщепленные к уровню аминокислот. Такие вещества усваиваются организмом значительно быстрее, чем обычные белки, а значит, и мышцы получают свою «порцию» протеинов быстрее.

Также для бодибилдеров особое значение имеют незаменимые аминокислоты. Они важны для поддержания формы мышечной ткани. А поскольку организм не в состоянии синтезировать их самостоятельно, для культуристов важно включать в рацион большое количество мясо-молочной продукции, сою и яйца. Кроме того, желающие нарастить мускулатуру прибегают к биодобавкам, содержащим аминокислоты.

Для здоровья и красоты

Помимо того, что аминокислоты играют важную роль в синтезе ферментов и белков, они важны для здоровья нервной и мышечной систем, для выработки гормонов, а также поддержания структуры всех клеток в организме.

А для бодибилдеров аминокислоты являются одним из самых значимых веществ, так как способствуют восстановлению организма. Будучи основой для протеинов, аминокислоты являются незаменимыми веществами для красивых мускул. Эти полезные элементы помогают сделать тренировки более эффективными, а после занятий избавляют от болезненных ощущений. В качестве биодобавок предотвращают разрушение мышечных тканей и являются идеальным дополнением к белковой диете. Также в функции аминокислот входит сжигание жира и подавление чрезмерного аппетита.

Суточная потребность: кому и сколько

Суточные дозировки определяются отдельно для каждой аминокислоты, исходя из потребностей и особенностей организма. Меж тем, средние показатели колеблются между 0,5 и 2 г в сутки.

Повысить уровень потребление аминокислотных комплексов важно людям, профессионально занимающимся спортом, а также на время усиленной физической нагрузки, интенсивной умственной работы, во время и после болезни. Правильный баланс аминокислот важен для детей в период роста.

Суточные нормы аминокислотного комплекса для бодибилдеров составляют от 5 до 20 г вещества для однократного приема. Меж тем, комбинируя прием этих полезных веществ со спортивным питанием, важно знать некоторые правила. Эффективность аминокислот (скорость усвоения) значительно снижается, если употреблять их вместе с едой или ее заменителями, протеинами или гейнерами.

В то же время людям с генетическими болезнями (при которых нарушается усваивание аминокислот) не стоит превышать рекомендуемые суточные дозы. В противном случае протеиновая пища может вызвать изменение в работе желудочно-кишечного тракта, аллергию. Кроме того, риску развития аминокислотного дисбаланса подвержены диабетики, люди с болезнями печени или страдающие дефицитом некоторых ферментов.

Потребляя белковую пищу, следует помнить, что быстрее всего всасываются аминокислоты из яичных белков, рыбы, творога и нежирного мяса. А для более интенсивного усвоения полезных веществ диетологи советуют правильно совмещать продукты. Молоко, к примеру, сочетается с белым хлебом или гречкой, а протеины из творога или мяса составляют «пару» с мучными изделиями.

Причина гормональных проблем

Недостаток любых полезных веществ, как правило, сказывается на здоровье. Снижение иммунитета, анемия и отсутствие аппетита – сигнал о серьезном дисбалансе питательных элементов. Недостаточное потребление аминокислот вызывает гормональные нарушения, рассеянность, раздражительность и депрессию. Кроме того, потеря веса, кожные проблемы, нарушение роста и сонливость также говорят об аминокислотном недостатке.

Избыток

Избыток аминокислот, как и нехватка полезных веществ, ведет к нарушениям работы организма. Правда, большинство негативных последствий от переизбытка аминокислот возможны только при гиповитаминозах А, Е, С, В, а также при дефиците селена.

Чрезмерное употребление гистидина – это почти всегда болезни суставов, седина в раннем возрасте, аневризма аорты. Избыток тирозина вызывает гипертонию, нарушение функций щитовидной железы. Метионин в больших дозах – это инфаркт либо инсульт.

Где искать незаменимые аминокислоты

В большинстве продуктов питания (преимущественно белковых) содержится порядка 20 аминокислот, 10 из которых являются незаменимыми.

Меж тем список этих полезных веществ гораздо шире: в природе насчитывается примерно 5 сотен аминокислот. И большинство из них необходимы для здоровой жизни. Часть этих элементов являются активными компонентами спортивного питания, биодобавок, медпрепаратов, а также используются в качестве добавок к кормам для животных.

Практически полный комплекс незаменимых аминокислот содержат в себе:

Другие полезные источники аминокислот: яйца, молоко, мясо (говядина, свинина, баранина, курятина), рыба (треска, судак), разные сорта сыров.

Взаимодействие с другими веществами

Водорастворимые аминокислоты прекрасно сочетаются с аскорбиновой кислотой, витаминами А, Е и группы В. В комплексе они способны принести в разы больше пользы. Этот нюанс важно учитывать, составляя меню из продуктов, богатых витаминами и полезными нутриентами.

Аминокислоты-биодобавки

Бодибилдеры активно используют аминокислоты в качестве питательных добавок. Существует несколько форм выпуска этих питательных веществ: таблетки, капсулы, порошки, растворы и даже внутривенные инъекции.

Время и частота приема аминокислот в качестве биодобавок зависит от цели. Если препарат принимают как вспомогательное средство для набора мышечной массы, тогда пить аминокислоты стоит перед и после тренировки, а также утром. А если препарат в первую очередь должен играть роль сжигателя жиров, пить его стоит чаще (насколько часто – указано в инструкции по применению).

Как правильно выбирать аминокислоты

Аминокислоты в форме биоактивных добавок к спортивному питанию, как правило, удовольствие не из дешевых. И чтобы не выбрасывать деньги на ветер важно перед покупкой проверить качество товара. Первым делом стоит обратить внимание на срок годности и качество упаковки, по консистенции и цвету вещество должно полностью соответствовать описанию. Кроме того, большинство аминокислот растворяются в воде и обладают горьким привкусом.

Читайте также:  Сергей бондарчук роли

Незаменимые аминокислоты: сравнительная таблица

Аминокислота Применение Дозировка (в качестве биодобавки для спортсменов) Передозировка;

Дефицит

Источники Гистидин Лечит артрит, нервную глухоту, улучшает пищеварение, необходим младенцам и детям во время роста 8-10 мг на 1 кг веса (минимум 1 г в сутки) Психические расстройства, тревога, шизофрения, подверженность стрессам;

Неизвестно.

Молочные продукты, мясо, птица, рыба, рис, ржа, пшеница, яблоки, гранат, свекла, морковь, сельдерей, огурец, одуванчик, цикорий, чеснок, редис, шпинат, репа Лизин Лечит герпес, добавляет энергию, способствует производству мышечного белка, борется с усталостью, поддерживает баланс азота в организме, важен для поглощения и сохранения кальция, способствует образованию коллагена 12 мг на 1 кг веса Повышение холестерина, диарея, камни в желчном пузыре;

Нарушение выработки ферментов, снижение веса, снижение аппетита, ухудшение концентрации.

Сыр, яйца, молоко, фасоль, картофель, мясо, дрожжи, соя, салат, тофу, яблоки, абрикосы, виноград, папайя, груши, свекла, морковь, сельдерей, огурец, зелень одуванчика, петрушка, шпинат, репа Фенилаланин Лечит депрессии, артрит, нервные расстройства, судороги, снимает напряжение с мышц, важен для производства нейротрансмиттеров серотонина и мелатонина 1 мг на 1 кг веса Повышенное артериальное давление, мигрени, тошнота, нарушение работы сердца и нервной системы. Не рекомендуется беременным и диабетикам;

Вялость, слабость, задержка роста, нарушение функций печени.

Молочные продукты, миндаль, орехи, семена, авокадо, соя, кунжут, фасоль, шпинат, яблоки, ананасы, свекла, морковь, петрушка, помидоры, пивные дрожжи Метионин Лечение печени, артрита, депрессий, ускоряет метаболизм жиров и улучшает пищеварение, антиоксидант, предотвращает накопление лишних жиров в сосудах и печени, выводит токсины 12 мг на 1 кг веса Возможна при дефиците витаминов группы В. Атеросклероз;

Жировое перерождение печени, замедление роста, вялость, отеки, кожные болезни.

Мясо, рыба яйца, бобы, чеснок, лук, чечевица, сметана, йогурт, шпинат, картофель, кунжут, соя, злаки, яблоки, ананасы, фундук, брюссельская капуста, цветная капуста, щавель, хрен, кресс-салат Лейцин Предотвращает атрофию мышц, природный анаболический агент, способствует заживлению ран и важен для выработки гормона роста 16 мг на 1 кг веса Повышает уровень аммиака;

Неизвестно.

Белковая пища, коричневый рис, бобы, орехи, цельное зерно, пшеница, соя, листовой салат, семена люцерны, фасоль, тофу, кунжут, авокадо, папайя, оливки, кокос Изолейцин Заживляет раны, высвобождает гормон роста, регулирует сахар в крови, важен для формирования гемоглобина, отвечает за структуру мышц 10-12 мг на 1 кг веса Вызывает частое мочеиспускание, осторожно принимать при болезнях почек или печени;

Неизвестно.

Яйца, рыба, мясо, печень, курица, миндаль кешью, чечевица, соевые продукты, кресс-салат, мангольд, шпинат, фасоль, авокадо, оливки, кокосы Валин Регулирует баланс азота, восстанавливает и способствует росту мышечной ткани 16 мг на 1 кг веса Покалывания кожи, галлюцинации, запрещен людям с болезнями печени или почек;

Болезнь «кленового сиропа».

Молочные продукты, мясо, злаки, грибы, арахис, соя, салат, кунжут, горох, фасоль, яблоки, миндаль, гранат, свекла, морковь, сельдерей, зелень одуванчика, салат, бамия, петрушка, пастернак, тыква, помидоры, репа, пивные дрожжи Треонин Важен для выработки коллагена, эластина, антител, поддерживает здоровье мышц, стимулирует рост, применяется для лечения психики 8 мг на 1 кг веса Неизвестно;

Раздражительность, ослабление иммунитета.

Мясо-молочная продукция, яйца, салат, соя, шпинат, кунжут, семена подсолнечника, фасоль Триптофан Важен для производства серотонина и мелатонина, необходим в период роста 3,5 мг на 1 кг веса Головокружение, мигрени, рвота, диарея;

Может послужить причиной развития туберкулеза, рака, диабета, слабоумия.

Мясо-молочная продукция, соевые продукты, шпинат, кунжут, салат, брокколи, спаржа, фасоль, овсяные отруби, брюссельская капуста, морковь, сельдерей, лук, цикорий, укроп, пивные дрожжи Аргинин Отвечает за восстановление мышц, быстрое заживление ран и травм, выводит шлаки, укрепляет иммунитет 0,4 мг на 1 кг веса Болезни поджелудочной железы, печени;

Снижение артериального давления, слабость, расстройство пищеварения.

Свинина, курица, лосось, яйца, молоко, кедровые орехи, грецкие орехи, семечки тыквы, рис, гречка, кукуруза, горох

Заменимые аминокислоты: значение для человека

Аланин – отвечает за уровень сахара в крови.

Аспарагин – способствует функционированию иммунной системы.

Глютамин – «топливо» для организма на время особо высоких нагрузок, укрепляет память, усиливает внимание.

Глицин – «сырье» для создания креатина, важен для поддержания жизненного тонуса.

Пролин – необходим для соединительной ткани, подпитывает организм во время нагрузок.

Серин – важен для нервной системы, снабжает клетки энергией.

Цитрулин – выводит из организма аммиак.

Таурин – влияет на работу нервной системы.

Цистеин – способствует очищению организма от токсинов и шлаков, отвечает за рост волос.

Орнитин – необходим для метаболизма жиров.

Аминокислоты, как витамины и нутриенты, – важная составная для поддержания здоровья и сил. Их недостаток весьма печально сказывается на самочувствии. Но в то же время нет надобности «подсаживать» организм на аминокислоты в форме биодобавок (конечно, если вы не бодибилдер, мечтающий о горе мышц). Обычным людям достаточно придерживаться правильного питания, ведь практически весь аминокислотный комплекс содержится в нашей ежедневной пище.

  1. Огнев С.И. Аминокислоты, пептиды и белки / Огнев С.И. – М.: Высшая школа, 2005. – 365с.
  2. Комов В.П.: Биохимия. – М.: Дрофа, 2008

Больше свежей и актуальной информации о здоровье на нашем канале в Telegram. Подписывайтесь: https://t.me/foodandhealthru

Специальность: инфекционист, гастроэнтеролог, пульмонолог .

Общий стаж: 35 лет .

Образование: 1975-1982, 1ММИ, сан-гиг, высшая квалификация, врач-инфекционист .

Научная степень: врач высшей категории, кандидат медицинских наук.

Повышение квалификации:

  1. Инфекционные болезни.
  2. Паразитарные заболевания.
  3. Неотложные состояния.
  4. ВИЧ.

Аминокисло́ты (аминокарбо́новые кисло́ты; АМК) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Основные химические элементы аминокислот — это углерод (C), водород (H), кислород (O), и азот (N), хотя другие элементы также встречаются в радикале определенных аминокислот. Известны около 500 встречающихся в природе аминокислот (хотя только 20 используются в генетическом коде). [1] Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминогруппы.

Содержание

История [ править | править код ]

Большинство из около 500 известных аминокислот были открыты после 1953 года, например во время поиска новых антибиотиков в среде микроорганизмов, грибов, семян, растений, фруктов и жидкостях животных. Примерно 240 из них встречается в природе в свободном виде, а остальные только как промежуточные элементы обмена веществ. [1]

Открытие аминокислот в составе белков [ править | править код ]

Аминокислота Аббревиатура Год Источник Впервые выделен [2]
Глицин Gly, G 1820 Желатин А. Браконно
Лейцин Leu, L 1820 Мышечные волокна А. Браконно
Тирозин Tyr, Y 1848 Казеин Ю. фон Либих
Серин Ser, S 1865 Шёлк Э. Крамер
Глутаминовая кислота Glu, E 1866 Растительные белки Г. Риттхаузен [de]
Глутамин Gln, Q
Аспарагиновая кислота Asp, D 1868 Конглутин, легумин (ростки спаржи) Г. Риттхаузен [en]
Аспарагин Asn, N 1806 Сок спаржи Л.-Н. Воклен и П. Ж. Робике
Фенилаланин Phe, F 1881 Ростки люпина Э. Шульце, Й. Барбьери
Аланин Ala, A 1888 Фиброин шёлка А. Штреккер, Т. Вейль
Лизин Lys, K 1889 Казеин Э. Дрексель
Аргинин Arg, R 1895 Вещество рога С. Гедин
Гистидин His, H 1896 Стурин, гистоны А. Коссель [3] , С. Гедин
Цистеин Cys, C 1899 Вещество рога К. Мёрнер
Валин Val, V 1901 Казеин Э. Фишер
Пролин Pro, P 1901 Казеин Э. Фишер
Гидроксипролин Hyp, hP 1902 Желатин Э. Фишер
Триптофан Trp, W 1902 Казеин Ф. Хопкинс, Д. Кол
Изолейцин Ile, I 1904 Фибрин Ф. Эрлих
Метионин Met, M 1922 Казеин Д. Мёллер
Треонин Thr, T 1925 Белки овса С. Шрайвер и другие
Гидроксилизин Hyl, hK 1925 Белки рыб С. Шрайвер и другие

Физические свойства [ править | править код ]

По физическим свойствам аминокислоты резко отличаются от соответствующих кислот и оснований. Все они кристаллические вещества, лучше растворяются в воде, чем в органических растворителях, имеют достаточно высокие температуры плавления; многие из них имеют сладкий вкус. Эти свойства отчётливо указывают на солеобразный характер этих соединений. Особенности физических и химических свойств аминокислот обусловлены их строением — присутствием одновременно двух противоположных по свойствам функциональных групп: кислотной и основной.

Общие химические свойства [ править | править код ]

Все аминокислоты — амфотерные соединения, они могут проявлять как кислотные свойства, обусловленные наличием в их молекулах карбоксильной группы — C O O H , так и основные свойства, обусловленные аминогруппой — N H 2. Аминокислоты взаимодействуют с кислотами и щелочами:

Растворы аминокислот в воде благодаря этому обладают свойствами буферных растворов, то есть находятся в состоянии внутренних солей.

N H 2 — C H 2 C O O H N + H 3 — C H 2 C O O —

Аминокислоты обычно могут вступать во все реакции, характерные для карбоновых кислот и аминов.

Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона.

Изоэлектрической точкой аминокислоты называют значение pH, при котором максимальная доля молекул аминокислоты обладает нулевым зарядом. При таком pH аминокислота наименее подвижна в электрическом поле, и данное свойство можно использовать для разделения аминокислот, а также белков и пептидов.

Читайте также:  Как высушить кокос

Цвиттер-ионом называют молекулу аминокислоты, в которой аминогруппа представлена в виде -NH3 + , а карбоксигруппа — в виде -COO − . Такая молекула обладает значительным дипольным моментом при нулевом суммарном заряде. Именно из таких молекул построены кристаллы большинства аминокислот.

Некоторые аминокислоты имеют несколько аминогрупп и карбоксильных групп. Для этих аминокислот трудно говорить о каком-то конкретном цвиттер-ионе.

Получение [ править | править код ]

Большинство аминокислот можно получить в ходе гидролиза белков или как результат химических реакций:

Оптическая изомерия [ править | править код ]

Все входящие в состав живых организмов α-аминокислоты, кроме глицина, содержат асимметрический атом углерода (треонин и изолейцин содержат два асимметрических атома) и обладают оптической активностью. Почти все встречающиеся в природе α-аминокислоты имеют L-конфигурацию, и лишь L-аминокислоты включаются в состав белка, синтезируемых на рибосомах.

D-Аминокислоты в живых организмах [ править | править код ]

Аспарагиновые остатки в метаболически неактивных структурных белках претерпевают медленную самопроизвольную неферментативную рацемизацию: в белках дентина и эмали зубов L-аспартат переходит в D-форму со скоростью

0,1 % в год [4] , что может быть использовано для определения возраста млекопитающих. Рацемизация аспартата также отмечена при старении коллагена; предполагается, что такая рацемизация специфична для аспарагиновой кислоты и протекает за счёт образования сукцинимидного кольца при внутримолекулярном ацилировании атома азота пептидной связи свободной карбоксильной группой аспарагиновой кислоты [5] .

С развитием следового аминокислотного анализа D-аминокислоты были обнаружены сначала в составе клеточных стенок некоторых бактерий (1966), а затем и в тканях высших организмов. [6] Так, D-аспартат и D-метионин предположительно являются нейромедиаторами у млекопитающих [7] .

В состав некоторых пептидов входят D-аминокислоты, образующиеся при посттрансляционной модификации. Например, D-метионин и D-аланин входят в состав опиоидных гептапептидов кожи южноамериканских амфибий филломедуз (дерморфина, дермэнкефалина и делторфинов). Наличие D-аминокислот определяет высокую биологическую активность этих пептидов как анальгетиков.

Сходным образом образуются пептидные антибиотики бактериального происхождения, действующие против грамположительных бактерий — низин, субтилин и эпидермин. [8]

Гораздо чаще D-аминокислоты входят в состав пептидов и их производных, образующихся путём нерибосомного синтеза в клетках грибов и бактерий. Видимо, в этом случае исходным материалом для синтеза служат также L-аминокислоты, которые изомеризуются одной из субъединиц ферментного комплекса, осуществляющего синтез пептида.

Протеиногенные аминокислоты [ править | править код ]

В процессе биосинтеза белка в полипептидную цепь включаются 20 α-аминокислот, кодируемых генетическим кодом. Помимо этих аминокислот, называемых протеиногенными, или стандартными, в некоторых белках присутствуют специфические нестандартные аминокислоты, возникающие из стандартных в процессе посттрансляционных модификаций. В последнее время к протеиногенным аминокислотам иногда причисляют трансляционно включаемые селеноцистеин (Sec, U) и пирролизин (Pyl, O). [9] [10] Это так называемые 21-я и 22-я аминокислоты. [11]

Вопрос, почему именно эти 20 аминокислот стали «избранными», остаётся нерешённым [12] . Решение этого вопроса смотрим в работе [13] . Не совсем ясно, чем эти аминокислоты оказались предпочтительнее других похожих. Например, ключевым промежуточным метаболитом пути биосинтеза треонина, изолейцина и метионина является α-аминокислота гомосерин. Очевидно, что гомосерин — очень древний метаболит, но для треонина, изолейцина и метионина существуют аминоацил-тРНК-синтетазы, тРНК, а для гомосерина — нет.

Структурные формулы 20 протеиногенных аминокислот обычно приводят в виде так называемой таблицы протеиногенных аминокислот:

Классификация [ править | править код ]

Аминокислота 3-буквы [14] 1-буква [14] аминокислот мнемоническое

pI шкала гидрофобности [17] частота в белках (%) [18] Глицин Gly G GGU, GGC, GGA, GGG Glycine Неполярные Алифатические 75,067 48 6,06 −0,4 7,03 Аланин Ala A GCU, GCC, GCA, GCG Alanine Неполярные Алифатические 89,094 67 6,01 1,8 8,76 Валин Val V GUU, GUC, GUA, GUG Valine Неполярные Алифатические 117,148 105 6,00 4,2 6,73 Изолейцин Ile I AUU, AUC, AUA Isoleucine Неполярные Алифатические 131,175 124 6,05 4,5 5,49 Лейцин Leu L UUA, UUG, CUU, CUC, CUA, CUG Leucine Неполярные Алифатические 131,175 124 6,01 3,8 9,68 Пролин Pro P CCU, CCC, CCA, CCG Proline Неполярные Гетероциклические 115.132 90 6,30 −1,6 5,02 Серин Ser S UCU, UCC, UCA, UCG, AGU, AGC Serine Полярные Оксимоноаминокарбоновые 105,093 73 5,68 −0,8 7,14 Треонин Thr T ACU, ACC, ACA, ACG Threonine Полярные Оксимоноаминокарбоновые 119,119 93 5,60 −0,7 5,53 Цистеин Cys C UGU, UGC Cysteine Полярные Серосодержащие 121,154 86 5,05 2,5 1,38 Метионин Met M AUG Methionine Неполярные Серосодержащие 149,208 124 5,74 1,9 2,32 Аспарагиновая

Asp D GAU, GAC asparDic acid Полярные

заряженные отрицательно 133,104 91 2,85 −3,5 5,49 Аспарагин Asn N AAU, AAC asparagiNe Полярные Амиды 132,119 96 5,41 −3,5 3,93 Глутаминовая

Glu E GAA, GAG gluEtamic acid Полярные

заряженные отрицательно 147,131 109 3,15 −3,5 6,32 Глутамин Gln Q CAA, CAG Q-tamine Полярные Амиды 146,146 114 5,65 −3,5 3,9 Лизин Lys K AAA, AAG before L Полярные заряженные положительно 146,189 135 9,60 −3,9 5,19 Аргинин Arg R CGU, CGC, CGA, CGG, AGA, AGG aRginine Полярные заряженные положительно 174.203 148 10,76 −4,5 5,78 Гистидин His H CAU, CAC Histidine Полярные

Гетероциклические 155,156 118 7,60 −3,2 2,26 Фенилаланин Phe F UUU, UUC Fenylalanine Неполярные Ароматические 165,192 135 5,49 2,8 3,87 Тирозин Tyr Y UAU, UAC tYrosine Полярные Ароматические 181,191 141 5,64 −1,3 2,91 Триптофан Trp W UGG tWo rings Неполярные Ароматические,

204,228 163 5,89 −0,9 6,73

По радикалу [ править | править код ]

  • Неполярные: глицин, аланин, валин, изолейцин, лейцин, пролин
  • Полярные незаряженные (заряды скомпенсированы) при pH=7: серин, треонин, цистеин, метионин, аспарагин, глутамин
  • Ароматические: фенилаланин, триптофан, тирозин
  • Полярные заряженные отрицательно при pH=7: аспартат, глутамат
  • Полярные заряженные положительно при pH=7: лизин, аргинин, гистидин[16]

По функциональным группам [ править | править код ]

  • Алифатические
  • Моноаминомонокарбоновые: глицин, аланин, валин, изолейцин, лейцин
  • Оксимоноаминокарбоновые: серин, треонин
  • Моноаминодикарбоновые: аспартат, глутамат, за счёт второй карбоксильной группы несут в растворе отрицательный заряд
  • Амиды моноаминодикарбоновых: аспарагин, глутамин
  • Диаминомонокарбоновые: лизин, аргинин, несут в растворе положительный заряд
  • Серосодержащие: цистеин, метионин
  • Ароматические: фенилаланин, тирозин, триптофан,
  • Гетероциклические: триптофан, гистидин, пролин
  • Иминокислоты: пролин
  • По классам аминоацил-тРНК-синтетаз [ править | править код ]

    • Класс I: валин, изолейцин, лейцин, цистеин, метионин, глутамат, глутамин, аргинин, тирозин, триптофан
    • Класс II: глицин, аланин, пролин, серин, треонин, аспартат, аспарагин, гистидин, фенилаланин

    Для аминокислоты лизин существуют аминоацил-тРНК-синтетазы обоих классов.

    По путям биосинтеза [ править | править код ]

    Пути биосинтеза протеиногенных аминокислот разноплановы. Одна и та же аминокислота может образовываться разными путями. К тому же совершенно различные пути могут иметь очень похожие этапы. Тем не менее, имеют место и оправданы попытки классифицировать аминокислоты по путям их биосинтеза. Существует представление о следующих биосинтетических семействах аминокислот: аспартата, глутамата, серина, пирувата и пентоз. Не всегда конкретную аминокислоту можно однозначно отнести к определённому семейству; делаются поправки для конкретных организмов и учитывая преобладающий путь. По семействам аминокислоты обычно распределяют следующим образом:

    Фенилаланин, тирозин, триптофан иногда выделяют в семейство шикимата.

    По способности организма синтезировать из предшественников [ править | править код ]

    • Незаменимые Для большинства животных и человека незаменимыми аминокислотами являются: валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан.
    • Заменимые Для большинства животных и человека заменимыми аминокислотами являются: глицин, аланин, пролин, серин, цистеин, аспартат, аспарагин, глутамат, глутамин, тирозин.

    Классификация аминокислот на заменимые и незаменимые не лишена недостатков. К примеру, тирозин является заменимой аминокислотой только при условии достаточного поступления фенилаланина. Для больных фенилкетонурией тирозин становится незаменимой аминокислотой. Аргинин синтезируется в организме человека и считается заменимой аминокислотой, но в связи с некоторыми особенностями его метаболизма при определённых физиологических состояниях организма может быть приравнен к незаменимым. Гистидин также синтезируется в организме человека, но не всегда в достаточных количествах, потому должен поступать с пищей.

    По характеру катаболизма у животных [ править | править код ]

    Биодеградация аминокислот может идти разными путями.

    По характеру продуктов катаболизма у животных протеиногенные аминокислоты делят на три группы:

    • Глюкогенные — при распаде дают метаболиты, не повышающие уровень кетоновых тел, способные относительно легко становиться субстратом для глюконеогенеза: пируват, α-кетоглутарат, сукцинил-KoA, фумарат, оксалоацетат
    • Кетогенные — распадаются до ацетил-KoA и ацетоацетил-KoA, повышающие уровень кетоновых тел в крови животных и человека и преобразующиеся в первую очередь в липиды
    • Глюко-кетогенные — при распаде образуются метаболиты обоих типов

    «Миллеровские» аминокислоты [ править | править код ]

    «Миллеровские» аминокислоты — обобщенное название аминокислот, получающихся в условиях, близких к эксперименту Стенли Л. Миллера 1953 года. Установлено образование в виде рацемата множества различных аминокислот, в том числе: глицин, аланин, валин, изолейцин, лейцин, пролин, серин, треонин, аспартат, глутамат

    Родственные соединения [ править | править код ]

    В медицине ряд веществ, способных выполнять некоторые биологические функции аминокислот, также (хотя и не совсем верно) называют аминокислотами:

    Применение [ править | править код ]

    Важной особенностью аминокислот является их способность к поликонденсации, приводящей к образованию полиамидов, в том числе пептидов, белков, нейлона, капрона, энанта. [19]

    Ссылка на основную публикацию
    Череп женщины фото
    Please complete the security check to access pixabay.com Why do I have to complete a CAPTCHA? Completing the CAPTCHA proves...
    Чем полезна селедка для мужчин
    Селедку ели практически все, я часто готовлю сала под шубой. Рыба не только вкусная, но и полезная. Именно этим объясняется...
    Чем полезна семга слабосоленая
    Красная рыба сёмга (второе название лосось) – любимое лакомство среднестатистического россиянина, которое очень полезно для здоровья человека. Запеченная, слабосоленая, копченая,...
    Черная вдова жиросжигатель состав
    В среде профессиональных спортсменов, бодибилдеров все знают, что такое «Чёрная вдова» (Black Widow — старое название, Black Spider — обновлённый...
    Adblock detector