Химические процессы на кухне

Химические процессы на кухне

Программа «Еда живая и мертвая» рассказывает о пяти пищевых превращениях, знания о которых помогут проникнуть в химическую суть происходящих на кухне процессов и понять, почему еда становится вкуснее.

1. Разложение соды.

Как сода делает пышными наши пироги и булки? И стоит ли ее предварительно гасить в ложке? Реакция тут очень простая — термическое разложение соды на воду и углекислый газ.

Некоторые хозяйки предварительно гасят соду уксусом — зачем? Говорят, чтобы избежать появления привкуса соды, если та частично не разложится. Но ведь и эффект ее при этом пропадает. Пузырьки выделяются раньше времени, еще до попадания в тесто. Поэтому гасить соду уксусом до внесения в тесто нет смысла. Зато вместо этого в тесто можно дабавить так называемый пекарский порошок: сухую смесь соды и лимонной кислоты. Тогда тосто получится пышным и хорошо пропечется. И никакого привкуса соды.

2. Денатурация белков.

Это явление мы наблюдаем каждый раз, когда готовим яичницу, тушим мясо или рыбу или взбиваем белки. «Денатурация» — химическое или температурное изменение пространственной структуры белков. Происходит под воздействием как температуры, так и низкого уровня PH.

Формула белка не меняется, но расположение молекулы становится другим. Именно поэтому яйцо из прозрачного делается белым; рыба или мясо тоже меняют цвет на более светлый. Вкус, конечно, тоже меняется. Кстати, и желудку денатурированный любым способом белок переварить становится проще.

3. Деструкция белка.

А еще во время рождения наших любимых блюд на плите происходит не только денатурация, но и деструкция белка. Именно на этом основано приготовление бульонов, желе, мармелада, заливного и холодца.

В состав мяса входит также структурный белок коллаген, который придает жесткость мясопродуктам. И соответственно, требует длительных приемов обработки. Коллаген в процессе термодеструкции, под действием высокой температуры, переходит в глютин.

С практической точки зрения важно понимать, что бульон получается вкуснее, когда в нем больше глютина, а ему надо дать вывариться из мяса или рыбы. Особенно хорошим источником этого вещества являются кости и хрящи — там много коллагена, который, разлагаясь при кипячении до глютина, и придает бульонам ту сытность, за которую мы их и ценим.

4. Карамелизация сахара.

Почему расплавленный сахар становится вкусным? Все дело в процессе, который называется «карамелизация». Этим термином пищевые технологи обозначают выделение сахаров из продуктов при готовке и, самое главное, реакцию окисления этих сахаров. При соединении с кислородом там образуются сотни разных веществ (некоторые даже не изучены как следует), и появляется тот самый божественный вкус.

То же самое происходит в овощах при запекании в духовом шкафу и при обжарке, пассеровании в растительном масле. Зная об этом, можно сделать сладкой без лишнего сахара, например, морковь. Как только выпарится сок, оставшиеся в ней сахара карамелизуются и придадут продукту новый приятный вкус.

5. Реакция Майяра

Но главное волшебство в продуктах происходит в том случае, если карамелизация сочетается с реакцией Майяра, при которой появляется поджаристая корочка на мясе или хлебе при их нагревании в печи или на сковородке.

Проще говоря, в продукте во время такой реакции взаимодействуют белки и сахара — как точно это происходит, науке до конца непонятно. Но повара уже взяли на вооружение данные ученых о том, что запускается реакция Майяра уже при температуре 60 градусов — на этом основана модная низкотемпературная готовка. Которая щадит витамины, но создает привычный вкус.

Именно реакции Майяра мы обязаны тем, что так аппетитно выглядят (и не только выглядят) зажаренные продукты. Причем аромат кажется приятным даже в том случае, если ради опыта соединяются белок сырого яйца и очищенная глюкоза.

Доктор химических наук Александр Рулёв, академик Михаил Воронков (Иркутский институт химии им. А. Е. Фаворского СО РАН).

«Никто не сделал так много для улучшения условий жизни людей, как химики», — справедливо утверждал нобелевский лауреат Гарольд Крото. Но, несмотря на неоценимую пользу, которую химия приносит человечеству, в мире процветает хемофобия — боязнь химии. Парадокс состоит ещё и в том, что каждый из живущих на земле людей — в той или иной степени химик. Например, когда проводит генеральную уборку, затевает стирку или хлопочет на кухне.

В самом деле, современная кухня во многом напоминает химическую лабораторию. С той лишь разницей, что кухонные полки заняты баночками, наполненными всевозможными крупами и специями, а лабораторные — уставлены склянками с не предназначенными для пищи реактивами. Вместо химических названий «хлорид натрия» или «сахароза» на кухне звучат более привычные слова «соль» и «сахар». Приготовление блюда по кулинарному рецепту можно сравнить с методикой проведения химического эксперимента.

Несомненно, помимо необходимых ингредиентов шеф-повар вкладывает в каждое блюдо и свою душу. При этом неважно, придерживается ли он классических традиций или предпочитает импровизацию. Всё это делает кулинарию особым видом искусства и одновременно сближает с химической наукой.

«Кухонная химия» зародилась давно. В XVIII—XIX столетиях изучением проблем, так или иначе связанных с пищей, всерьёз занимались многие известные учёные, и прежде всего французские химики (не потому ли французская кухня считается одной из самых утончённых в мире?). Основатель современной химии Антуан Лоран Лавуазье обнаружил зависимость качества мясного бульона от его плотности. Он же, проводя термохимические исследования, пришёл к выводу о важности соблюдения баланса калорий, потребляемых человеком с пищей и расходуемых им при физической активности. Его соотечественник Антуан Огюст Пармантье стал одним из основоположников школы хлебопечения, агитировал за использование сахара, полученного из свёклы, винограда и других овощей и фруктов, предложил способы консервации продуктов питания. Другой французский учёный, Мишель Шеврёль, установил состав и строение жиров. Увлёкшись анализом мясного сока, выдающийся немецкий химик Юстус фон Либих изобрёл так называемый мясной экстракт, доживший до наших дней под именем «бульонные кубики». Он также разработал молочные смеси — предшественники современного детского питания. Наконец, знаменитый французский химик Марселен Бертло экспериментально доказал возможность синтеза природных жиров из глицерина и жирных карбоновых кислот. Он полагал, что в скором будущем химия избавит человека от тяжёлого сельскохозяйственного труда, заменив привычные хлеб, мясо и овощи специальными таблетками. В их составе будут все необходимые компоненты — азотсодержащие вещества (прежде всего, аминокислоты и белки), жиры, сахара и немного приправ. Какая же скучная жизнь начнётся, когда, произнося на торжественном приёме тост, вместо бокала с игристым шампанским придётся держать в руках пилюлю!

Читайте также:  Из чего делают стейк свинины

Действительно, за прошедшие десятилетия химия в немалой степени изменила ассортимент «скатерти-самобранки» человека. В начале XX века, когда химическая наука переживала настоящий бум, Владимир Маяковский утверждал, что она сможет создать даже искусственную пищу:

Завод.
Главвоздух.
Делают вообще они
воздух
прессованный
для междупланетных сообщений.

Так же
вырабатываются
из облаков
искусственная сметана
и молоко.

Его предсказания оказались пророческими: современные химики научились «вырабатывать» молоко, сыр, простоквашу и другие продукты из сои, а на основе белков куриных яиц и пищевого желатина полвека назад в Институте элементоорганических соединений им. А. Н. Несмеянова впервые получили искусственную зернистую чёрную икру. Однако и сегодня о реакциях, протекающих на Солнце, мы знаем, пожалуй, больше, чем о сложнейших процессах, которые происходят, когда мы варим, жарим, тушим или запекаем что-либо.

Как известно, основными компонентами пищи человека являются белки, жиры, углеводы, витамины и минеральные вещества. Большинство их претерпевает химические превращения при кулинарной обработке, определяя структуру и вкусовые качества будущего съедобного шедевра.

Однако природу происходящих химических процессов человек начал понимать относительно недавно. Как это часто бывает в науке, первый шаг в этом направлении был сделан случайно. «Сегодня мы можем провести конденсацию определённого сахара с какой-либо аминокислотой» — так в январе 1912 года французский врач и химик Луи Камилл Майяр резюмировал суть своего удивительного открытия. Изучая возможность синтеза белков при нагревании, он получил вещества, которые, как оказалось, определяют цвет и запах многих готовых блюд. Почти четыре десятилетия спустя американский химик Джон Ходж установил механизм открытой Майяром реакции и её роль в процессах приготовления пищи. Опубликованная им в «Journal of Agricultural and Food Chemistry» работа до сих пор является самой цитируемой среди когда-либо вышедших в этом журнале статей.

Учёные по праву считают реакцию Майяра одной из самых интересных и важных в химии пищи и медицине: несмотря на солидный возраст, она хранит ещё немало тайн. Достижениям в изучении реакции Майяра было посвящено несколько международных научных форумов. Последний, одиннадцатый по счёту, состоялся в сентябре 2012 года во Франции.

Строго говоря, реакция Майяра — это не одна, а целый комплекс последовательных и параллельных процессов, происходящих при варке, жарке и выпечке. Каскад превращений начинается конденсацией восстанавливающих сахаров (к ним относятся глюкоза и фруктоза) с соединениями, молекулы которых содержат первичную аминогруппу (аминокислоты, пептиды и белки). Образующиеся продукты реакции претерпевают затем дальнейшие превращения при взаимодействии с другими компонентами пищи, давая смесь разнообразных соединений — ациклических, гетероциклических, полимерных, которые и отвечают за запах, вкус и цвет подвергшихся термической обработке полуфабрикатов. Понятно, что в зависимости от условий протекают разные реакции, приводящие к разным конечным продуктам. В реакции Майяра образуются как интенсивно окрашенные, так и бесцветные продукты, которые могут быть вкусными и ароматными или, напротив, прогорклыми и неприятно пахнущими,быть как антиоксидантами, так и ядами. Таким образом, реакция Майяра может повышать питательную ценность пищи, но может и делать её опасной для употребления.

Любая хозяйка знает, что цвет блюда существенно зависит от того, как оно готовилось, иными словами — от условий проведения реакции Майяра. Например, если грибы обжарить в оливковом масле на открытой сковороде, то они приобретут аппетитный золотистый оттенок. Если же их готовить при помешивании под крышкой, содержащаяся в грибах влага не позволит им подрумяниться.

Известен любопытный психологический эксперимент, когда стол, уставленный аппетитными закусками, осветили так, что цвета последних изменились до неузнаваемости: мясо приобрело серый оттенок, салат стал фиолетовым, а молоко — фиолетово-красным. Участники эксперимента, только что испытывавшие обильное слюноотделение в предвкушении роскошной трапезы, были не в силах даже попробовать столь необычно окрашенную пищу. Тот же, чьё любопытство пересилило неприязнь и кто всё-таки осмелился отведать угощение, чувствовал себя скверно.

О роли запаха в привлекательности блюда знает каждый, у кого хотя бы однажды закладывало нос: пища в этот момент кажется абсолютно безвкусной. Как правило, за запах того или иного блюда отвечает набор соединений. Так, восхитительный аромат кофе представляет собой букет более тысячи (!) душистых веществ. А запах свежеиспечённого хлеба формируют около двухсот компонентов, относящихся к различным классам органических соединений. Среди них спирты, альдегиды, кетоны, сложные эфиры, карбоновые кислоты. Только последних в нём не один десяток: муравьиная, уксусная, пропионовая, масляная, валерьяновая, гексановая, октановая, додекановая, бензойная…

Хотя единой теории ароматов до сих пор не создано, химики установили, что даже незначительная модификация структуры молекулы способна иногда существенно изменить запах вещества. Наиболее яркие примеры подобного рода, имеющие отношение к еде, — терпеновый углеводород лимонен и его кислородсодержащее производное карвон. Так, (R)- и (S)-лимонены, различающиеся только пространственным расположением заместителей, имеют апельсиновый и лимонный аромат соответственно. Оптические изомеры карвона также пахнут по-разному: один из них, (S)-карвон, имеет запах тмина и укропа, а его антипод пахнет остролистной мятой. Хотя, конечно, правильнее говорить, что запах всех этих фруктов и растений обусловлен присутствием упомянутых соединений.

Очевидно, что, «играя» с запахами, химики могут заставить любое блюдо источать неповторимый аромат. Например, при смешивании двух частей (R)-карвона и трёх частей бутанона запах мяты исчезает, уступая место … тминному аромату.

Со вкусом тоже всё не так просто. Известны вещества, имеющие «несколько вкусов». Например, бензоат натрия кому-то кажется сладковатым, кому-то кислым, у кого-то после дегустации во рту остаётся горечь, а некоторые вообще находят его безвкусным. Рассказывают, что некий химик любил пошутить, предлагая своим гостям попробовать раствор этой соли (до сих пор солидные компании и предприятия пищевой промышленности используют её в качестве консерванта). К радости хозяина, после дегустации этого угощения между гостями разгоралась перебранка: каждый пытался доказать, что его ощущения от напитка — самые верные.

Четверть века назад появилась заманчивая идея разделить тот или иной продукт на составляющие его компоненты, а затем сложить из них блюдо с оригинальным букетом вкусов и запахов. Так родилась научная дисциплина, получившая название «молекулярная гастрономия». Её основателями считаются профессор физики Оксфордского университета Николас Курти и французский физикохимик Эрве Тис. Основные цели новой науки Э. Тис изложил в диссертации «Молекулярная и физическая гастрономия», которую успешно защитил в 1995 году в Университете Пьера и Марии Кюри. Среди членов жюри по присуждению ему учёной степени были нобелевские лауреаты Жан-Мари Лен (премия по химии 1987 года) и Пьер-Жиль де Жен (премия по физике 1991 года). Фундаментальную задачу молекулярной гастрономии её создатели видели в исследовании различных процессов, происходящих при кулинарной обработке пищевых продуктов, и применении полученных результатов для приготовления оригинальных яств. Иными словами, предлагали подойти к кулинарии с научной точки зрения.

Читайте также:  Черный хлеб с маслом калории

Методы обработки и консервации продуктов, применяемые в молекулярной гастрономической химии, заметно отличаются от привычных. Одним из впечатляющих результатов синтеза кулинарии и естественных наук стал низкотемпературный способ приготовления мясных блюд. Оказалось, что самое сочное и нежное мясо получается при 55оС. Более высокая температура способствует интенсивному испарению воды и разрушению мясного сока. Знание физико-химических свойств пищевых продуктов позволяет заменять один ингредиент другим. Так, при приготовлении крутого заварного крема вместо куриного белка, который, как известно, является аллергеном, можно с успехом использовать агар-агар. Эта смесь полисахаридов, добываемая из красных и бурых морских водорослей, — эффективный природный пенообразователь.

В 1992 году в Италии прошёл первый Международный семинар по молекулярной и физической гастрономии. С тех пор встречи приверженцев этой науки стали регулярными. На них собираются учёные, диетологи, повара и рестораторы, заинтересованные в использовании новых технологий для достижения баланса вкусов, близкого к идеальному, и создания настоящих кулинарных шедевров.

Не так давно престижные европейские рестораны открыли у себя специальные кулинарные лаборатории. Предполагается, что к 2014 году в Испании распахнёт двери первая в мире Академия гастрономических наук. Однако уже сегодня в некоторых университетах и колледжах мира начали готовить бакалавров кулинологии. Новая дисциплина объединяет кулинарное искусство и науку о продуктах питания и технологии их переработки. Возможно, со временем кулинология выльется в новый раздел органической или пищевой химии.

Несмотря на достаточно активную пиар-кампанию в прессе, идеи молекулярной гастрономии не стали пока модным трендом современной кулинарии: большинство шеф-поваров (не говоря уже о домашних хозяйках) по-прежнему готовят по известным рецептам, передающимся от повара к ученику, не прибегая к помощи химии и физики для улучшения уже существующих фирменных блюд или разработки новых рецептур.

Впрочем, химики не только лучше других разбираются в процессах, происходящих при приготовлении пищи, но и, как правило, гурманы и искусные кулинары. Так, основоположник химической термодинамики Джозайя Гиббс увлекался приготовлением салатов, которые удавались ему лучше, чем кому-либо из его домочадцев. Приготовленные учёным аппетитные кушанья назывались незамысловато: «гетерогенные равновесия».

Конечно, вопросов о том, что происходит с питательными веществами при нагревании в кастрюле и на сковородке, пока остаётся много. Понимание этих процессов необходимо не только для традиционной кухни, но и для развития новых технологий приготовления пищи.

Хозяйке — на заметку

В 2009 году в издательстве Wiley VCH увидела свет книга «Что стряпают в химии: как ведущие химики преуспевают на кухне», в которой известные химики мира (в том числе и нобелевские лауреаты) поделились своими достижениями на «научной кухне» и рецептами любимых блюд кухни домашней. Профессор Геттингенского университета Армин де Майере — один из тех, кто, придя домой, не прочь сменить лабораторный халат на кухонный фартук. Область его научных интересов — химия производных циклопропана — оригинальных соединений, которые лишь на первый взгляд кажутся простыми. С читателями книги он поделился рецептом, сохранившимся у него ещё со студенческой скамьи. Он признавался, что блюдом, приготовленным по этому рецепту в мае 1960 года, ему удалось удивить свою подругу Уте Фитцнер, которая четыре года спустя стала его женой. Вот этот рецепт. Для приготовления трапезы на четыре персоны требуется: 600 г мясного фарша (свинина : говядина, 50:50), 4—5 луковиц среднего размера, 100 г жирного бекона, 50 г томатной пасты или 50—100 г кетчупа, 400 г спагетти, соль, сладкий и острый перец. Тонко нарезанный жирный бекон поджарьте на большой сковороде, добавьте мелко порезанный лук и при постоянном перемешивании обжарьте его до золотистого цвета (проведите реакцию Майяра!). Затем добавьте мясной фарш и продолжайте жарить, не забывая хорошо помешивать. Когда мясо будет готово, добавьте томатную пасту или кетчуп. По желанию можно использовать также различные приправы или острый соус. Содержимое сковороды продолжайте перемешивать, при необходимости добавляя воду, чтобы получилась кашеобразная масса. Сварите спагетти и, не давая им остыть, смешайте с полученной мясной заправкой. Блюдо подавайте горячим. Предложенная рецептура, возможно, один из первых примеров комбинаторной кухни. В самом деле, как и в комбинаторной химии, изменяя соотношения используемых в рецепте ингредиентов, можно получать разные блюда.

Некоторые авторы научно-фантастических произведений любят кормить своих героев питательными пилюлями. Представив себе обед, состоящий из одних пилюль, – любитель вкусно поесть может высказать вполне обоснованное пожелание чтобы наука не вмешивалась в поварское искусство. Однако подобная просьба окажется слишком запоздалой, потому что с доисторических времен человек стихийно использует на кухне научные принципы. Экспериментирование и внимательное наблюдение жизненно необходимы в любой науке. Но ведь как раз это отличает и хорошего повара. Знания, постепенно накапливаемые на протяжении многих поколений, воплотились в великое множество рецептов. Каждый из них — результат бесчисленного ряда экспериментов. А повар подчас и не ведает, что он владеет искусством научного поиска. Давайте посмотрим, какое же отношение имеет наука к приготовлению пищи и как хороший повар управляет многочисленными химическими и физическими превращениями.

Современная наука, исследуя различные изменения, которые идут при приготовлении тех или иных блюд, помогает поварам. Исследования ученых позволили разнообразить блюда, улучшить их качество, сократить затраты труда. Однако не надо забывать и о том, чем наука обязана поварам. Они, по существу, были приемными родителями экспериментальной науки, во многом определили поиски древних алхимиков, которые позаимствовали у поваров большую часть оборудования: печи, котлы, тазы, прессы для выдавливания соков и даже самую кухню. Да и сегодня не один юный химик строит свои установки в основном из различных кухонных принадлежностей, выпрошенных у мамы.

Достаточно взглянуть на этот рисунок, чтобы увидеть явное сходство между кухонным и лабораторным инвентарем. Все эти орудия труда предназначены для выполнения одинаковых операций, таких, как измерение, нагревание, выпаривание, измельчение и перемешивание.

Можно утверждать, что повар, сам того не ведая, использует многие науки: физику, химию, микробиологию и даже психологию. Вот несколько примеров, подтверждающих сказанное.

Нагревание — операция, которой подвергается большинство творений повара. В его распоряжении духовка для нагрева пищи в окислительной атмосфере при регулируемой температуре, разнообразные сковороды для быстрого нагревания, герметические кастрюли для скорого нагрева при высокой температуре в инертной атмосфере водяного пара. Путем соответствующей термообработки повар может существенно улучшить усвояемость пищи, изменять ее микроструктуру, запах и внешний вид. (и многие кулинарные девайсы, такие как например расстоечная камера для выпечки, также работают на основании физических и химических принципов).

Читайте также:  Есть ли в капусте белки

Почему же нагрев улучшает усвояемость пищи? Дело в том, что нагрев вызывает изменение белков и крахмала пищи, они становятся более податливыми для дальнейшего расщепления в нашем организме. Ферментам пищеварительных соков становится легче проникать к «интересующим» их молекулам, когда оболочки и мембрана клеток тканей разрушены.

Структура продуктов питания с высоким содержанием белков (например, мяса и рыбы) изменяется, прежде всего, за счет денатурации белков и, кроме того, гидролиза (расщепления в результате реакции с водой) некоторых из них. Лучшие куски мяса содержат мало соединительных тканей. В этом случае мясо достаточно умеренно обработать теплом, чтобы оно стало вкусным, аппетитным. Примером такого рода может служить слегка недожаренный бифштекс из вырезки. В других, более жестких кусках мяса соединительных тканей больше. Поэтому и варить их надо дольше, чтобы в ходе гидролиза определенная часть тканевых белков, таких, как коллаген, превратилась в желатин. В результате мясо становится мягким.

Процесс варки влияет самыми различными путями и на запах пищи. Простейший пример — варка фруктов. Одно из основных изменений, которые происходят при этом, — ослабление аромата. Дело в том, что при варке теряются летучие вещества. В других случаях нагрев за счет распада тех или других компонентов пищевого продукта может вызвать появление новых запахов. Когда в карамельном производстве варят сахарную патоку, появляются запахи различных кетоновых кислот и альдегидов — продуктов распада сахара и крахмала, Альдегиды образуются также при расщеплении некоторых аминокислот. В большинстве случаев нагревание вызывает также частичное разрушение серосодержащих соединений. При этом образуются меркаптаны и даже сернистый водород — основной компонент запаха вареной капусты,

В процессе готовки происходят и химические взаимодействия. Вкус мяса, например, изменяется отчасти вследствие сложных реакций между сахаром-рибозой и аминокислотами. Свой вклад в изменение вкуса вносит и окисление атмосферным кислородом. Особенно это относится к жареной пище. Процесс гидролиза также причастен к изменению вкуса. В некоторых пищевых продуктах гидролиз приводит к освобождению аминокислот и осколков нуклеиновой кислоты, которые сами по себе вкуса не имеют, но усиливают, делают более острым тот вкус, которым уже обладает пищевой продукт.

На Востоке издавна применяют ферментированные соевые соусы для того, чтобы придать более острый вкус кушаньям. А недавно кулинары стали достигать того же эффекта, добавляя в пищу созданный учеными глюканат натрия — продукт, действующий по тому же принципу, что и соевый соус, но гораздо более дешевый.

Нагревание изменяет и внешний вид пищи, ее цвет и объем. Эти изменения вовсе не всегда желательны. Обесцвечивание и «усадку» можно свести до минимума, выбрав правильное сочетание длительности и температуры нагрева. Иногда повара добавляют к супу соду, чтобы предотвратить нежелательные изменения зеленого пигмента овощей. Для того, чтобы вареный рис не пожелтел, его смачивают соком лимона. В результате изменяется концентрация ионов водорода. Это как раз то, что нужно: в рисе есть пигмент, который в щелочной среде желтеет. Подкисляя рис, повар предупреждает изменение цвета пигмента.

Как правило, внешний вид пищи полностью находится во власти повара. Привлекательный золотисто-желтый цвет печенья возникает в результате «карамелизации» сахара и взаимодействия его с белком. Смачивая сырое печенье молоком, кондитер тем самым наносит на поверхность дополнительное количество сахара и белка. После выпечки поверхность печенья становится глянцевитой.

Повар может изменять и объем пищевого продукта. Например, пар между прослойками масла заставляет будущее слоеное печенье взбухать, подниматься. Эта разбухшая форма сохраняется и впоследствии за счет денатурации белков муки под действием тепла. При идеальных условиях выпечки денатурация белков и образование пара идут одновременно, а масляные прослойки все это время остаются для пара непроницаемыми.

Вот какие изменения происходят при нагревании в пищевых продуктах. Но в своей работе повар имеет дело и с другими процессами, которые относятся к самым различным областям науки.

Говоря языком физики, повар должен управлять многими поверхностными явлениями, особенно такими, которые связаны с процессом денатурации. Часто на поверхности сваренных супов и соусов образуется пленка. Это результат денатурации белка, которая происходит вследствие абсорбции на границе воздух — жидкость. Появления такой пленки можно избежать, покрыв поверхность раздела слоем растопленного масла. С другой стороны, взбивая яичные белки для пирожного, повар намеренно интенсифицирует поверхностную денатурацию белка. В данном случае жиры будут помехой. Вот почему желтки (в них содержится около 30% жиров) приходится тщательно отделять.

Но последнее место в «поварской физике» принадлежит эмульсиям. Например, майонез — эмульсия жира в воде с высоким содержанием жира. Чтобы майонез не превратился в эмульсию воды в жире (при этом нарушается его структура), в него добавляют тщательно перемешанный яичный желток, который служит хорошим эмульгатором. Он же исполняет роль эмульгатора и для другой хорошо известной эмульсии жира в воде — мороженого. Для того, чтобы стабилизировать эмульсию во время замораживания, в нее добавляют молочные белки и желатин. Желатин, в частности, обеспечивает однородную, без зерен структуру мороженого, действует в качестве коллоидного агента, предотвращающего рост больших ледяных кристаллов. Роль повара как химика, пожалуй, этим не исчерпывается.

Если очищенный от кожуры картофель не залить водой, он начинает темнеть. Это объясняется тем, что фенолы, присутствующие в картофеле, окисляясь под действием ферментов, превращаются в хиноны, которые полимеризируются затем в темные пигменты. Залив картофель водой, мы преграждаем доступ кислороду. А если, кроме того, добавить в воду немного лимонного сока — подкислить ее, картофель еще лучше сохранит белый цвет, так как кислота снижает активность ферментов. Кислоты применяются в «поваренной химии» и для интенсификации гидролиза. Например, для приготовления маринада мясо и рыбу вымачивают в уксусе. В результате гидролиз во время варки идет интенсивнее, белки мяса размягчаются сильнее.

Микроорганизмы — это и помощники и потенциальные враги повара. Они трудятся над приготовлением простокваши, сыров и различных вин. А микроорганизмы, вызывающие гниение, могут отравить пищу, особенно если она несколько не доварена. Яды, вырабатываемые микробами, вызывают тяжелое отравление, и повар должен всегда быть настороже, тщательно отбирать продукты для приготовления пищи, строго соблюдать требования технологии и гигиены поварского дела.

Ссылка на основную публикацию
Adblock detector