Энергетический цикл кребса

Энергетический цикл кребса

Цикл трикарбоновых кислот впервые был открыт английским биохимиком Г. Кребсом. Он первым постулировал значение данного цикла для полного сгорания пирувата, главным источником которого является гликолитическое превращение углеводов. В дальнейшем было показано, что цикл трикарбо-новых кислот является тем центром, в котором сходятся практически все метаболические пути. Таким образом, цикл Кребса – общий конечный путь окисления ацетильных групп (в виде ацетил-КоА), в которые превращается в процессе катаболизма большая часть органических молекул, играющих роль «клеточного топлива»: углеводов, жирных кислот и аминокислот.

Образовавшийся в результате окислительного декарбоксилирования пирувата в митохондриях ацетил-КоА вступает в цикл Кребса. Данный цикл происходит в матриксе митохондрий и состоит из восьми последовательных реакций (рис. 10.9). Начинается цикл с присоединения ацетил-КоА к оксалоацетату и образования лимонной кислоты (цитрата). Затем лимонная кислота (шестиуглеродное соединение) путем ряда дегидрирований (отнятие водорода) и двух декарбоксилирований (отщепление СО2) теряет два углеродных атома и снова в цикле Кребса превращается в оксалоацетат (четырехуглеродное соединение), т.е. в результате полного оборота цикла одна молекула ацетил-КоА сгорает до СО2 и Н2О, а молекула окса-лоацетата регенерируется. Рассмотрим все восемь последовательных реакций (этапов) цикла Кребса.

Первая реакция катализируется ферментом цит-рат-синтазой, при этом ацетильная группа ацетил-КоА конденсируется с оксалоацетатом, в результате чего образуется лимонная кислота:

По-видимому, в данной реакции в качестве промежуточного продукта образуется связанный с ферментом цитрил-КоА. Затем последний самопроизвольно и необратимо гидролизуется с образованием цитрата и HS-KoA.

В результате второй реакции образовавшаяся лимонная кислота подвергается дегидратированию с образованием цис-аконитовой кислоты, которая, присоединяя молекулу воды, переходит в изолимонную кислоту (изоцитрат). Катализирует эти обратимые реакции гидратации–дегидратации фермент аконитатгидратаза (аконитаза). В результате происходит взаимоперемещение Н и ОН в молекуле цитрата:

Третья реакция, по-видимому, лимитирует скорость цикла Кребса. Изолимонная кислота дегидрируется в присутствии НАД-зависимой изо-цитратдегидрогеназы.

В ходе изоцитратдегидрогеназной реакции изолимонная кислота одновременно декарбоксилируется. НАД-зависимая изоцитратдегидрогеназа является аллостерическим ферментом, которому в качестве специфического активатора необходим АДФ. Кроме того, фермент для проявления своей активности нуждается в ионах Mg 2+ или Мn 2+ .

Во время четвертой реакции происходит окислительное декарбокси-лирование α-кетоглутаровой кислоты с образованием высокоэнергетического соединения сукцинил-КоА. Механизм этой реакции сходен с таковым реакции окислительного декарбоксилирования пирувата до ацетил-КоА, α-кетоглутаратдегидрогеназный комплекс напоминает по своей структуре пируватдегидрогеназный комплекс. Как в одном, так и в другом случае в реакции принимают участие 5 коферментов: ТПФ, амид липоевой кислоты, HS-KoA, ФАД и НАД + .

Пятая реакция катализируется ферментом сукцинил-КоА-синтета-зой. В ходе этой реакции сукцинил-КоА при участии ГТФ и неорганического фосфата превращается в янтарную кислоту (сукцинат). Одновременно происходит образование высокоэргической фосфатной связи ГТФ за счет высокоэргической тиоэфирной связи сукцинил-КоА:

В результате шестой реакции сукцинат дегидрируется в фумаровую кислоту. Окисление сукцината катализируется сукцинатдегидрогеназой, в молекуле которой с белком прочно (ковалентно) связан кофермент ФАД. В свою очередь сукцинатдегидрогеназа прочно связана с внутренней ми-тохондриальной мембраной:

Седьмая реакция осуществляется под влиянием фермента фума-ратгидратазы (фумаразы). Образовавшаяся при этом фумаровая кислота гидратируется, продуктом реакции является яблочная кислота (малат). Следует отметить, что фумаратгидратаза обладает стереоспецифичностью (см. главу 4) – в ходе реакции образуется L-яблочная кислота:

Наконец, в ходе восьмой реакции цикла трикарбоновых кислот под влиянием митохондриальной НАД-зависимой малатдегидрогеназы происходит окисление L-малата в оксалоацетат:

Как видно, за один оборот цикла, состоящего из восьми ферментативных реакций, происходит полное окисление («сгорание») одной молекулы ацетил-КоА. Для непрерывной работы цикла необходимо постоянное поступление в систему ацетил-КоА, а коферменты (НАД + и ФАД), перешедшие в восстановленное состояние, должны снова и снова окисляться. Это окисление осуществляется в системе переносчиков электронов в дыхательной цепи (в цепи дыхательных ферментов), локализованной в мембране митохондрий. Образовавшийся ФАДН2 прочно связан с СДГ, поэтому он передает атомы водорода через KoQ. Освобождающаяся в результате окисления ацетил-КоА энергия в значительной мере сосредоточивается в макроэргических фосфатных связях АТФ. Из 4 пар атомов водорода 3 пары переносят НАДН на систему транспорта электронов; при этом в расчете на каждую пару в системе биологического окисления образуется 3 молекулы АТФ (в процессе сопряженного окислительного фосфорилирования), а всего, следовательно, 9 молекул АТФ (см. главу 9). Одна пара атомов от сукцинатдегидрогеназы-ФАДН2 попадает в систему транспорта электронов через KoQ, в результате образуется только 2 молекулы АТФ. В ходе цикла Кребса синтезируется также одна молекула ГТФ (субстратное фосфорилирование), что равносильно одной молекуле АТФ. Итак, при окислении одной молекулы ацетил-КоА в цикле Кребса и системе окислительного фосфорилирования может образоваться 12 молекул АТФ.

Если подсчитать полный энергетический эффект гликолитического расщепления глюкозы и последующего окисления двух образовавшихся молекул пирувата до СО2 и Н2О, то он окажется значительно большим.

Как отмечалось, одна молекула НАДН (3 молекулы АТФ) образуется при окислительном декарбоксилировании пирувата в ацетил-КоА. При расщеплении одной молекулы глюкозы образуется 2 молекулы пирувата, а при окислении их до 2 молекул ацетил-КоА и последующих 2 оборотов цикла трикарбоновых кислот синтезируется 30 молекул АТФ (следовательно, окисление молекулы пирувата до СО2 и Н2О дает 15 молекул АТФ). К этому количеству надо добавить 2 молекулы АТФ, образующиеся при аэробном гликолизе, и 6 молекул АТФ, синтезирующихся за счет окисления 2 молекул внемитохондриального НАДН, которые образуются при окислении 2 молекул глицеральдегид-3-фосфата в дегидрогеназной реакции гликолиза. Следовательно, при расщеплении в тканях одной молекулы глюкозы по уравнению С6Н12О6 + 6О2 —> 6СО2 + 6Н2О синтезируется 38 молекул АТФ. Несомненно, что в энергетическом отношении полное расщепление глюкозы является более эффективным процессом, чем анаэробный гликолиз.

Необходимо отметить, что образовавшиеся в процессе превращения глицеральдегид-3-фосфата 2 молекулы НАДН в дальнейшем при окислении могут давать не 6 молекул АТФ, а только 4. Дело в том, что сами молекулы внемитохондриального НАДН не способны проникать через мембрану внутрь митохондрий. Однако отдаваемые ими электроны могут включаться в митохондриальную цепь биологического окисления с помощью так называемого глицеролфосфатного челночного механизма (рис. 10.10). Ци-топлазматический НАДН сначала реагирует с цитоплазматическим ди-гидроксиацетонфосфатом, образуя глицерол-3-фосфат. Реакция катализи-

Рис. 10.10. Глицеролфосфатный челночный механизм. Объяснение в тексте.

руется НАД-зависимой цитоплазматической глицерол-3-фосфат-дегидроге-назой:

Дигидроксиацетонфосфат + НАДН + Н + Глицерол-3-фосфат + НАД + .

Образовавшийся глицерол-3-фосфат легко проникает через митохонд-риальную мембрану. Внутри митохондрии другая (митохондриальная) глицерол-3-фосфат-дегидрогеназа (флавиновый фермент) снова окисляет глицерол-3-фосфат до диоксиацетонфосфата:

Глицерол-3-фосфат + ФАД Диоксиацетонфосфат + ФАДН2.

Восстановленный флавопротеин (фермент-ФАДН2) вводит на уровне KoQ приобретенные им электроны в цепь биологического окисления и сопряженного с ним окислительного фосфорилирования, а диоксиаце-тонфосфат выходит из митохондрий в цитоплазму и может вновь взаимодействовать с цитоплазматическим НАДН + Н + . Таким образом, пара электронов (из одной молекулы цитоплазматического НАДН + Н + ), вводимая в дыхательную цепь с помощью глицеролфосфатного челночного механизма, дает не 3, а 2 АТФ.

Рис. 10.11. Малат-аспартатная челночная система для переноса восстанавливающих эквивалентов от цитозольного НАДН в митохондриальный матрикс. Объяснение в тексте.

В дальнейшем было показано, что с помощью данного челночного механизма лишь в скелетных мышцах и мозге осуществляется перенос восстановленных эквивалентов от цитозольного НАДН + Н + в митохондрии.

В клетках печени, почек и сердца действует более сложная малат-ас-партатная челночная система. Действие такого челночного механизма становится возможным благодаря присутствию малатдегидрогеназы и ас-партатаминотрансферазы как в цитозоле, так и в митохондриях.

Установлено, что от цитозольного НАДН + Н + восстановленные эквиваленты сначала при участии фермента малатдегидрогеназы (рис. 10.11) переносятся на цитозольный оксалоацетат. В результате образуется малат, который с помощью системы, транспортирующей дикарбоновые кислоты, проходит через внутреннюю мембрану митохондрии в матрикс. Здесь малат окисляется в оксалоацетат, а матриксный НАД + восстанавливается в НАДН + Н + , который может теперь передавать свои электроны в цепь дыхательных ферментов, локализованную на внутренней мембране митохондрии. В свою очередь образовавшийся оксалоацетат в присутствии глутамата и фермента АсАТ вступает в реакцию трансаминирования. Образующиеся аспарат и α-кетоглутарат с помощью специальных транспортных систем способны проходить через мембрану митохондрий.

Транспортирование в цитозоле регенерирует оксалоацетат, что вызывает к действию следующий цикл. В целом процесс включает легкообратимые реакции, происходит без потребления энергии, «движущей силой» его является постоянное восстановление НАД + в цитозоле гли-церальдегид-3-фосфатом, образующимся при катаболизме глюкозы.

Читайте также:  Классные девки фото

Итак, если функционирует малат-аспартатный механизм, то в результате полного окисления одной молекулы глюкозы может образоваться не 36, а 38 молекул АТФ (табл. 10.1).

В табл. 10.1 приведены реакции, в которых происходит образование высокоэргических фосфатных связей в ходе катаболизма глюкозы, с указанием эффективности процесса в аэробных и анаэробных условиях.

Следующий этап энергетического обмена, идущий за гликолизом, — клеточное дыхание, или, как его еще называют, биологическое окисление. Это кислородный этап окисления органических соединений. Если рассматривать дыхание в широком смысле слова, то это процесс поглощения живыми организмами кислорода (О2) из окружающей среды и выделения ими углекислого газа (СО2). Этот процесс необходим для поддержания внутриклеточных окислительных процессов, обеспечивающих энергетический обмен. Дыхание может быть внешним дыханием и тканевым или клеточным. Что такое внешнее дыхание понятно из названия. Так называют процесс газообмена между живым организмом и окружающей его средой. Тканевое или клеточное дыхание (еще называют биологическое окисление) – совокупность ферментативных окислительно-восстановительных реакций. В результате этих реакций сложные органические вещества окисляются кислородом до углекислого газа, при этом освобождается энергия, запасаемая клетками в форме АТФ.

Клеточное дыхание у растений, животных и большей части аэробных микроорганизмов начинается с отщепления СО2 (декарбоксилирования) от молекулы пировиноградной кислоты (пирувата), которая была образована в процессе гликолиза. Таким образом, гликолиз является необходимой подготовительной стадией клеточного дыхания при расщеплении углеводов. В процессе этой реакции от пирувата отрывается СО2 и образуется двухуглеродный остаток – радикал уксусной кислоты (ацетил-радикал). Этот двухуглеродный остаток присоединяется к молекуле универсального переносчика углеводородных радикалов — кофермента А — с образованием ацетил-кофермента А (ацетил-КоА). В результате этой реакции НАД+ восстанавливается до НАДН. Ацетил-КоА и НАДН образуются и при окислении жирных кислот, которые также являются субстратами клеточного дыхания. В дальнейшем окисление ацетил-КоА происходит в цикле Кребса, а НАДН – в дыхательной цепи митохондрий. В цикл Кребса на различных стадиях могут вступать все аминокислоты. Таким образом, в цикле Кребса сходятся пути окисления и углеводов, и жиров, и белков.

Отщепление молекулы углекислого газа от молекулы пировиноградной кислоты.

Цикл Кребса (также его называют цикл трикарбоновых кислот или цикл лимонной кислоты) – это сложный многоступенчатый окислительно-восстановительный процесс, в результате которого остаток уксусной кислоты, полученный от ацетил-КоА, полностью окисляется до 2-х молекул СО2 с образованием 3-х молекул НАДН, одной молекулы ФАДН2 и одной молекулы ГТФ. Все ферменты цикла Кребса также, как и ферменты окисления жирных кислот, локализованы в матриксе митохондрий, а один фермент – сукцинатдегидрогеназа – находится во внутренней митохондриальной мембране.

На первой стадии цикла Кребса остаток уксусной кислоты передается от ацетил-КоА на молекулу щавелевоуксусной кислоты (оксалоацетата) с образованием лимонной кислоты (цитрата), которая через промежуточную реакцию образования цис-аконитовой кислоты превращается в изолимонную кислоту (изоцитрат). От изолимонной кислоты отщепляется СО2 и 2 атома Н + , в результате чего образуется молекула НАДН и a-кетоглутаровая кислота (a-кетоглутарат), которая взаимодействует с молекулой кофермента А. При этом отщепляется вторая молекула СО2 и образуется еще одна молекула НАДН и богатое энергией соединение сукцинил-КоА, которое расщепляется с образованием свободной янтарной кислоты (сукцината), что сопровождается синтезом ГТФ из ГДФ и Фн. Янтарная кислота окисляется до фумаровой (фумарата) с образованием ФАДН2, фумаровая кислота с присоединением воды превращается в яблочную (малат), а яблочная кислота окисляется до щавелевоуксусной (оксалоацетата) с образованием НАДН. На этой стадии цикл Кребса замыкается, т.е. оксалоацетат может снова вступать в цикл и конденсироваться со следующим остатком уксусной кислоты с образованием цитрата.

Таким образом, суммарную реакцию цикла Кребса можно описать следующим уравнением:

Ацетил-КоА +3НАД + + ФАД + ГДФ + Фн +3Н2О —> 2СО2 + 3НАДН + 3Н + + ФАДН2 + ГТФ + КоА

Энергия, освобождаемая при окислении ацетил-КоА, запасается в виде одной молекулы ГТФ (которая может превращаться в АТФ) и 4-х молекул восстановительных эквивалентов (3 молекулы НАДН и одна ФАДН2),
которые могут или использоваться в различных процессах биосинтеза, или окисляться. Дальнейшее их окисление происходит в дыхательной цепи митохондрий, которая локализована во внутренней митохондриальной мембране. При окислении НАДН в дыхательной цепи митохондрий происходит отрыв от него электронов, и их перенос на молекулу кислорода. У аэробных бактерий дыхательная цепь расположена в специальных структурах плазматической мембраны – мезосомах, и в общих чертах напоминает дыхательную цепь митохондрий.

Характеристики цикла Кребса

Входящий субстрат

Ацетилкоэнзим А — источником ацетильной группы являются пируват, жирные кислоты и аминокислоты.
Источником некоторых интермедиатов являются аминокислоты.

Локализация ферментов Внутренние отделы митохондрий (матрикс) Образование АТФ

Непосредственно в цикле образуется одна молекула ГТФ, которая может быть превращена в АТФ.
Функционирует только в аэробных условиях, хотя непосредственно молекулярный кислород в этом метаболическом пути не используется.

Образование коферментов 3НАДН + 3H + и ФАДН2 Конечные продукты

Две молекулы CO2 на каждую молекулу ацетилкоэнзима А, входящую в цикл. Некоторые интермедиаты используются для синтеза аминокислот и других органических молекул, необходимых для осуществления функций клетки

Суммарная реакция АцетилКоА + 3НАД + + ФАД + ГДФ + Pi + 2H2O —> 2CO2 + KoA + 3НАДН + 3H + + ФАДН2 + ГТФ

Окислительное фосфорилирование начинается с окисления НАДН в дыхательной цепи митохондрий, сопровождающегося отщеплением двух электронов и протона (Н + ). Окончательным акцептором этих электронов является О2, который соединяется с ионами Н + , находящимися в матриксе, с образованием Н2О. Электроны, отобранные от НАДН, передаются в дыхательной цепи от одного переносчика к другому, при этом они теряют свой восстановительный потенциал. Часть энергии, выделяемой при этом, рассеивается в виде тепла, но, кроме того, часть энергии тратится на создание на внутренней мембране митохондрий разности концентраций протонов (электрохимического потенциала) за счет их переноса в нескольких пунктах дыхательной цепи (так называемых пунктах сопряжения) из матрикса в межмембранное пространство.

Разность концентраций протонов получается в результате того, что при переносе электронов от НАДН к кислороду происходит «перекачивание» протонов из матрикса митохондрий в межмембранное пространство.

«Перекачивание» протонов из матрикса митохондрий в межмембранное пространство

В результате работы дыхательной цепи митохондрий концентрация Н + в межмембранном пространстве намного выше их концентрации в матриксе, это создает направленный внутрь митохондрий градиент концентрации протонов. Мембрана митохондрий является для них непроницаемой, т.е. можно сказать, что она работает как плотина гидроэлектростанции, удерживающая воду в водохранилище. Энергия данного градиента используется ферментом АТФ-синтетазой, переносящим в матрикс ионы Н + и синтезирующим АТФ из АДФ и Фн.

Для синтеза 1 молекулы АТФ необходимо перенести внутрь митохондрий 3 иона Н + по градиенту концентрации, следовательно за счет окисления 1 молекулы НАДН может быть синтезировано 3 молекулы АТФ, а при окислении 1 молекулы ФАДН2 – 2 молекулы АТФ.

Кроме того, часть энергии градиента концентрации протонов тратится на перенос через внутреннюю мембрану митохондрий различных веществ. Синтез АТФ в митохондиях ферментом АТФ-синтетазой называют окислительным фосфорилированием, подчеркивая связь этого процесса с окислением органических субстратов.

Характеристики окислительного фосфорилирования

Входящие субстраты

Атомы водорода, полученные от НАДН + Н + и ФАДН2.
Молекулярный кислород.

Локализация ферментов Внутренняя мембрана митохондрий Образование АТФ

Три молекулы АТФ на каждую молекулу НАДН + Н +
Две молекулы АТФ на каждую молекулу ФАДН2

Конечный продукт H2O — одна молекула на каждую пару водородов, входящих в цепь Суммарная реакция

1/4 O2 + НАДН + Н + + 3АДФ + 3Pi —> H2O + НАД + + 3АТФ

Таким образом, в результате полного окисления глюкозы до углекислого газа CO2 и воды H2O образуется большое количество АТФ – 38 молекул. Две из них синтезируются в процессе гликолиза, а остальные 36 – при окислении пирувата. 1) при образовании одной молекулы пирувата в процессе гликолизе восстанавливается молекула НАДН, окисление которого в митохондриях дает 3 молекулы АТФ. 2) в процессе декарбоксилировании пирувата и образовании ацетил-КоА будет восстановлена еще 1 молекула НАДН (т.е. это 3 молекулы АТФ). 3) в цикле Кребса образуются 3 молекулы НАДН (это будет 9 молекул АТФ), 1 молекула ФАДН2 (плюс еще 2 молекулы АТФ) и 1 молекула ГТФ (обменивается своим терминальным макроэргическим фосфатом с АДФ, что дает еще 1 молекулу АТФ). Т.е., при полном окислении образовавшейся в гликолизе 1 молекулы НАДН и 1 молекулы пирувата получается 18 молекул АТФ, а 2-х – соответственно 36 молекул АТФ. С учетом того, что в процессе гликолиза образовались 2 молекулы АТФ, полный энергетический выход при окислении глюкозы до углекислого газа (CO2) и воды (H2O) в процессе клеточного дыхания, будет составлять 38 молекул АТФ.

Полный энергетический выход окисления глюкозы до углекислого газа и воды в процессе клеточного дыхания составляет 38 молекул АТФ

Читайте также:  Диетическое заливное из курицы

Итоговое уравнение данного процесса будет выглядеть следующим образом:

Эффективность полного окисления глюкозы до углекислого газа и воды очень высока: от 55 до 70% освобождающейся энергии (в зависимости от конкретных условий) запасается в виде макроэргических связей в молекулах АТФ; остальная часть энергии рассеивается в виде тепла.

Таким образом, основным продуктом реакций энергетического обмена является АТФ.

Привет! Скоро лето, а значит, все второкурсники медвузов будут сдавать биохимию. Сложный предмет, на самом деле. Чтобы немного помочь тем, кто повторяет материал к экзаменам, я решил сделать статью, в которой расскажу вам о «золотом кольце» биохимии — цикле Кребса. Его также называют цикл трикарбоновых кислот и цикл лимонной кислоты, это всё синонимы.

Сами реакции я распишу в следующей статье. Сейчас же я расскажу о том, для чего нужен цикл Кребса, где он проходит и в чём его особенности. Надеюсь, получится понятно и доступно.

Для начала давайте разберём что такое обмен веществ. Это основа, без которой понимание Цикла Кребса невозможно.

Метаболизм

Одно из важнейших свойств живого (вспоминаем биологию) — это обмен веществ с окружающей средой. Действительно, только живое существо может что-то поглощать из окружающей среды, и что-то потом в неё выделять.

В биохимии обмен веществ принято называть «метаболизм». Обмен веществ, обмен энергией с окружающей средой — это метаболизм.

Когда мы, допустим, съели бутерброд с курицей, мы получили белки (курица) и углеводы (хлеб). В процессе пищеварения белки распадутся до аминокислот, а углеводы — до моносахаров. То, что я описал сейчас, называется катаболизм, то есть распад сложных веществ на более простые. Первая часть метаболизма — это катаболизм.

Ещё один пример. Ткани в нашем организме постоянно обновляются. Когда отмирает старая ткань, её обломки растаскивают макрофаги, и они заменяется новой тканью. Новая ткань создаётся в процессе синтеза белка из аминокислот. Синтез белка происходит в рибосомах. Создание нового белка (сложного вещества) из аминокислот (простого вещества) — это анаболизм.

Итак, анаболизм — это противоположность катаболизму. Катаболизм — это разрушение веществ, анаболизм — это создание веществ. Кстати, чтобы их не путать, запомните ассоциацию: «Анаболики. Кровью и потом». Это голливудский фильм (довольно скучный, на мой взгляд) о спортсменах, применяющих анаболики для роста мышц. Анаболики — рост, синтез. Катаболизм — обратный процесс.

Точка пересечения распада и синтеза.

Цикл Кребса как ступень катаболизма.

Как связаны метаболизм и цикл Кребса? Дело в том, что именно цикл Кребса является одной из важнейших точек, в которой сходятся пути анаболизма и катаболизма. Именно в этом и заключается его значение.

Давайте разберём это на схемках. Катаболизм можно условно представить как расщепление белков, жиров и углеводов в нашей пищеварительной системе. Итак, мы скушали пищу из белков, жиров, и углеводов, что дальше?

А дальше все эти вещества распадутся на простые составляющие:

  • Жиры — на глицерин и жирные кислоты (могут быть и другие компоненты, я решил взять самый простой пример);
  • Белки — на аминокислоты;
  • Полисахаридные молекулы углеводов — на одинокие моносахариды.

Далее, в цитоплазме клетки, последует превращение этих простых веществ в пировиноградную кислоту (она же — пируват). Из цитоплазмы пировиноградная кислота попадёт в митохондрию, где превратится в ацетил коэнзим А. Пожалуйста, запомните эти два вещества — пируват и ацетил КоА, они очень важны.

Давайте теперь посмотрим, как происходит этап, который мы сейчас расписали:

Важная деталь: аминокислоты могут превращаться в ацетил КоА сразу, минуя стадию пировиноградной кислоты. Жирные кислоты сразу превращаются в ацетил КоА. Учтём это и подредактируем нашу схемку, чтобы получилось правильно:

Превращения простых веществ в пируват происходят в цитоплазме клеток. После этого пируват поступает в митохондрии, где успешно превращается в ацетил КоА.

Для чего пируват превращается в ацетил КоА? Именно для того, чтобы запустить наш цикл Кребса. Таким образом, мы можем сделать ещё одну надпись в схеме, и получится правильная последовательность:

В результате реакций цикла Кребса образуются важные для жизнедеятельности вещества, главные из которых:

  • НАДH (НикотинАмидАденинДиНуклеотид+ катион водорода) и ФАДH2 (ФлавинАденинДиНуклеотид+молекула водорода). Я специально выделил заглавными буквами составные части терминов, чтобы легче было читать, в норме их пишут одним словом. НАДH и ФАДH2 выделяются в ходе цикла Кребса, чтобы потом принять участие в переносе электронов в дыхательную цепь клетки. Иными словами, эти два вещества играют важнейшую роль в клеточном дыхании.
  • АТФ, то есть аденозинтрифосфат. Это вещество имеет две связи, разрыв которых даёт большое количество энергии. Этой энергией снабжаются многие жизненно важные реакции;

Также выделяются вода и углекислый газ. Давайте отразим это на нашей схеме:

Кстати, весь цикл Кребса происходит в митохондриях. Именно там, где проходит и подготовительный этап, то есть превращение пирувата в ацетил КоА. Не зря кстати митохондрии называют «энергетическая станция клетки».

Цикл Кребса как начало синтеза

Цикл Кребса удивителен тем, что он не только даёт нам ценные АТФ (энергию) и коферменты для клеточного дыхания. Если посмотрите на предыдущую схему, вы поймёте, что цикл Кребса — это продолжение процессов катаболизма. Но вместе с тем он является и первой ступенькой анаболизма. Как это возможно? Как один и тот же цикл может и разрушать, и создавать?

Оказывается, отдельные продукты реакций цикла Кребса могут частично отправляться на синтез новых сложных веществ в зависимости от потребностей организма. Например, на глюконеогенез — это синтез глюкозы из простых веществ, не являющихся углеводами.

  • Реакции цикла Кребса каскадны. Они происходят одна за другой, и каждая предыдущая реакция запускает последующую;
  • Продукты реакций цикла Кребса частично идут на запуск последующей реакции, а частично — на синтез новых сложных веществ.

Давайте попробуем отразить это на схеме, чтобы цикл Кребса был обозначен именно как точка пересечения распада и синтеза.

Голубыми стрелочками я отметил пути анаболизма, то есть создания новых веществ. Как видите, цикл Кребса действительно является точкой пересечения многих процессов и разрушения, и созидания.

Самое важное

  • Цикл Кребса — перекрёстная точка метаболических путей. Им заканчивается катаболизм (распад), им начинается анаболизм (синтез);
  • Продукты реакций Цикла Кребса частично идут для запуска следующей реакции цикла, а частично отправляются на создание новых сложных веществ;
  • Цикл Кребса образует коферменты НАДH и ФАДН2, которые переносят электроны для клеточного дыхания, а также энергию в виде АТФ;
  • Цикл Кребса происходит в митохондриях клеток.

More from my site

23 Responses

Все очень понятно объяснили , доступным языком и ни чего лишнего )

Очень все доступно обьяснено. Когда то я все это сдала на отлично на 2 курсе. Но после 20 лет практики все забыла. И стыдно стало. Вот теперь пытаюсь вспомнить, хотя больгинство моих коллег и не пытаются это знать. Спросите у своего семейного врача: зачем нужен цикл Кребса? А орнитиновый цикл?

Михаил.К

Вот-вот, 20 лет практики и всё забыто. А между тем нарушенный цикл Кребса, особенно при латентном ацидозе, является основой воспалительных процессов организма. Воспаление — основной фактор ускоренного старения и ранней смерти. Лечим не причину, а его следствие… увы.

Читайте также:  Как беречь колени

Валентина

Спасибо,все забыла из.биохимии,очень доходчиво

Orest

Блестящее объяснение! Приходите ко мне в колледж читать фармакологию 😀

Спасибо огромное! Биофак тридцать лет назад плюс эта информация сразу расставляет все по местам: как мы питаемся, что мы едим и для чего нам это нужно! Явно не для получения удовольствия от пищи! А ведь многие люди уверены, что еда нужна, чтоб было ВКУСНО!

Михаил К.

Алексей

Все вроде понятно но при чем сдесь лимонная кислота про нее не слова?

Pavel

Лимонная кислота — это продукт первой из восьми реакций цикла Кребса. В следующей же статье вы можете увидеть их все)

Михаил

Белки и жиры у вас проходят стадию пирувата. Это — свойство только глюкозы. Смысла нет аминокислоты диссимилировать на составные. С жирами тоже-они целиком идут на коэнзим. В итоге, в ЦКТ вовлечены только глюкоза и жиры, читай, пируват и коэнзим. Именно поэтому при ИЗСД при нехватке глюкозы в клетке накапливаются кетоны. Я 33 года болею диабетом без осложнений. Если интересно-пишите.

Pavel

Добрый день, Михаил! Очень извиняюсь за столь запоздалый ответ. Я, конечно, могу ошибаться, но нам в университете рассказывали, что аминокислоты также могу превращаться в пируват, становясь таким образом метаболитами Цикла Кребса.
Посмотрите, пожалуйста, учебник по биохимии, например, «Биохимия, том 2» автора Страйера. Глава 18.7, «Судьба атомов углерода распавшихся аминокислот».
Будьте здоровы!

Юлия Сергеевна

У моей дочери трескается кожа на пальцах рук, а теперь язык. Наверное неправильно работает цикл кребеса и ко всему я предполагаю, что взрывной характер так же изза не правильной работы митохондрий. Как наладить систему? Что посоветуете?

Pavel

Добрый день, Юлия Сергеевна. Неправильная работа цикла Кребса — это абстрактное заключение. Существуют так называемые наследственные ферментопатии — врождённые нарушения работы ферментов, в том числе и ферментов цикла Кребса.
Вашей дочери следует обследоваться у хороших специалистов. Я далёк от области изучения эндокринных нарушений (я студент меда — старшекурсник). Но я бы посоветовал начать с эндокринолога, обязательно сдать общий анализ крови и биохимию, показаться с ними знающему терапевту, а далее уже по результатам действовать.
Здоровья вам и вашей дочке!

Наталия

Здравствуйте! хочу попросить вашей помощи. Я читала книги спортивного физиолога Бориса Степановича Жерлыгина, он является основателем Клуба ПРОЩАЙ.ДИАБЕТ. Так вот он считает, что от диабета 2 типа спасает усиление цикла Крабса, потому что этот цикл-общий конечный путь окисления ацетильных групп, в которые в процессе катаболизма превращается большая часть органических молекул, играющих роль «клеточного топлива»(включая глюкозу).То есть чем мощнее цикл Крепса, тем больше глюкозы сгорает, а ее уровень в крови нормализуется полностью.
Объясните, пожалуйста, как это сделать практически? Какие упражнения для этого нужны,чтобы увеличить количество митохондрий ? Знаете ли вы что либо об этом?

Pavel

Добрый день, уважаемая Наталья. Я не нашёл в сети каких-либо сертификатов или иных документов, которые бы подтвердили хотя бы наличие высшего медицинского образования у Бориса Степановича.

Теперь о лечении диабета второго типа. Человек с такой патологией должен наблюдаться у хорошего, дипломированного врача-эндокринолога. Инсулин при диабете второго типа не всегда находится в недостатке, а лишь на определённом этапе течения болезни. Поэтому у значительного числа пациентов возможно лечение только приёмом специальных препаратов в виде таблеток. Что касается отмены инсулина — на стадии СД2, когда наступает дистрофия и атрофия бета-клеток поджелудочной железы, отказ от инсулина, с точки зрения современной доказательной медицины, может повлечь за собой очень грозные и опасные для жизни последствия.

Теперь об увеличении количеств митохондрий. Количество клеточных органелл (так называют органы клетки) всегда должно соответствовать той нагрузке, которой клетка подвергается. Я (студент 4-го курса мед. университета) ни разу не слышал о попытках искусственного увеличения органелл, в частности, митохондрий, для лечения сахарного диабета. И это при том, что СД изучался мной на 4-х предметах, я даже хотел отдельную статью про него написать. Вообще, насколько я знаю, проблема при СД 2-го типа заключается в том, что глюкоза не может попасть внутрь клетки. У меня вопрос к Борису Степановичу — как вообще влияет количество митохондрий на СД 2-го типа, если глюкоза до них просто не добирается из-за невозможности попасть в саму клетку? И ещё один вопрос. Его заявления чрезвычайно смелы и радикальны (дайте мне 70 больных диабетом и я больше половины из них «сниму» с инсулина). В каких авторитетных, рецензируемых научных журналах можно почитать о его методике?

Мария

по поводу белков в глюкозу, на сколько я помню у человека (изучала биохимию в 1м меде СПБ) у человека белки в глюкозу не преобразуются-именно поэтому диета при сахарном диабете белковая и крупа гречневая..И это существенная особенность. А вот у кошек белки в глюкозу преобразуются в том же цикле (что и понятно-они эволюционно строгие мясоеды) поэтому у кошек белковая диета никоим образом уровень глюкозы в крови не снижает. Пока писала, подумала о метаболизме у народов крайнего севера-питание рыбой и мясом, поняла что их энергия в жирах. То есть цикл Кребса не одинаков для человека и кошки. Хотя суть одна. Не пренебрегайте библиотеками и академическими изданиями. Автор статьи-проверьте и исправьте в случае подтверждения моих слов. Это важно. PS Возможно за 15 лет были сделаны новые открытия в данной области. Но, насколько я помню, были примеры бесчеловечных экспериментов при питании человека только белками он погибает. Источники не помню.

Pavel

Добрый день, Мария. Я не писал про то, что белки превращаются в глюкозу, это было бы действительно неграмотно. Чтобы быстро освежить ваши знания по главным путям метаболизма, а также про то, откуда берётся глюкоза, я рекомендую вам почитать главы про глюконеогенез и про судьбу всосавшихся аминокислот. Об этом, например, отлично пишут Берёзов и Коровкин в своём учебнике по биохимии. Когда я писал эту статью, я опирался именно на эту книгу. С уважением, Павел, medicine-boy

Елена

Спасибо огромное за статью. Как все быстро забывается, но… и также быстро восстанавливается- вот так лежит информация «в нужной комнатке мозга» и ждет своего часа. Павел, можно ли получить доступ к вашим соц сетям- в вк или ок? Возможно, там много очень интересной информации.

Pavel

Спасибо за отзыв, уважаемая Елена) Я подумываю завести сообщество вк или хотя бы отдельную страницу с логотипом сайта. Но я сам учусь, и у меня проблемы со временем (это заметно по тому, что новую статью про анатомию кроветворной системы я пишу уже 3 месяца) . На сегодняшний день для связи со мной есть только моя страница вк https://vk.com/id231420474

Но там нет ничего полезного, никаких ссылок или новостей)

Дарья

Вау.
Всё было действительно максимально просто и понятно, спасибо вам большое!)
В меде не учусь, но иногда такой интерес к этой теме берёт – жуть. Хорошо, что нашла вас сайт, теперь смогу удовлетворять любопытство.
Пойду читать и другие статьи)

Pavel

Спасибо вам за отзыв! Буду стараться и дальше писать в таком же стиле)

Ольга

Павел здравствуйте . А как цикл Кребса связан с ожирением. я не медик и не биолог. можно также доступно пояснить как и Вы объяснили о цикле Кребса, или подсказать где можно найти и ознакомиться с данным вопросом. Благодарю.

Наталья

Павел, здравствуйте! Заинтересовалась препаратом Ветомгин 8.21 в описании указано, что активизирует цикл Кребса и случайно вышла на вашу статью. Спасибо за статью.

Ссылка на основную публикацию
Adblock detector